График проекции перемещения от времени

Самое важное по теме: "график проекции перемещения от времени" с профессиональной точки зрения. Мы собрали, агрегировали и представили в доступном виде всю имеющуюся по теме информацию и предлагаем ее к прочтению.

1. МЕХАНИКА
1.1. Кинематика

Движение с ускорением

Равноускоренное прямолинейное движение – движение по прямой с постоянным ускорением (а = const ).

Ускорение а (размерность: м/с 2 ) – векторная физическая величина, показывающая, на сколько изменяется скорость тела за 1 с.

В векторном виде:

В проекции на ось ОХ формула аналогичная

Знаки проекции ускорения зависят от направления вектора ускорения и оси – сонаправлены они или направлены противоположно.

Измерительный прибор – акселерометр. (В ЕГЭ по физике есть вопросы, каким прибором что измеряют.)

График ускорения – зависимость проекции ускорения от времени:

График ускорения при равноускоренном прямолинейном движении – прямая, параллельная оси времени (1, 2).
Чем дальше график от оси времени (2), тем больше модуль ускорения.

Мгновенная скорость – скорость в данный момент времени или в данном месте пространства .

Скорость при равноускоренном прямолинейном движении.

В векторном виде,
в проекции на ось OX,
с учетом знака ускорения («+» разгон, «-» торможение):


График мгновенной скорости – зависимость проекции скорости от времени.

График скорости при равноускоренном прямолинейном движении – прямая (1, 2, 3). Если график располагается над осью времени, то тело движется по направлению оси ОХ.

Чем больше угол наклона графика (3), тем больше модуль ускорения.

Если график пересекает ось времени (2), то на первом этапе тело тормозило, в какой-то момент скорость его стала равной нулю, и далее тело двигалось ускоренно в противоположную сторону.

Геометрический смысл перемещения


Модуль перемещения при равноускоренном прямолинейном движенииравен площади трапеции под графиком скорости.

Формулы для определения кинематических величин равноускоренного прямолинейного движения:


«Без ускорения» и «без времени» означает, что в этих формулах не фигурирует ускорение и время, но это не значит, что ускорение равно нулю.
Цветом выделены основные формулы, остальные легко выводятся из них.

Уравнение координаты при равноускоренном прямолинейном движении позволяет определить кинематические величины равноускоренного прямолинейного движения даже в тех случаях, когда направление движения меняется:

Графики кинематических величин прямолинейного движения.
Их ндо уметь читать и рисовать. По горизонтальной оси обычно время. По вертикальной оси. будьте внимательны!

Свободное падение

Это частный случай движения с ускорением.

• Свободное падение происходит под действием только силы тяжести. Подробнее о связи силы с ускорением будет в теме «Динамика», второй закон Ньютона.

• Сопротивление воздуха обычно не учитывается.

• Все тела независимо от массы падают (в вакууме или без учета сопротивления воздуха) с одинаковым ускорением.

• Ускорение свободного падения всегда направлено вниз, к центру Земли и равно g = 9,8 м/с 2 ; в задачах округляется до
g = 10 м/с 2 .

• Свободное падение по вертикали – пример равноускоренного прямолинейного движения.

• В задачах на свободное падение единицы измерения всех величин сразу следует переводить в СИ.

Основные формулы для определения кинематических величин при свободном падении (вертикальный бросок) те же, что даны выше. При этом ускорение a=g=10 м/с 2 .

Уравнение координаты при свободном падении позволяет определить кинематические величины свободного падения даже в тех случаях, когда направление движения изменяется. Уравнение координаты позволяет определить высоту тела в любой момент времени.

В разделе «Динамика» рассмотрим более сложные случаи:
— Тело подбросили от земли и поймали на некоторой высоте.
— Тело подбросили от земли, на одной и той же высоте оно побывало дважды.
— Горизонтальный бросок (движение по параболе). Бросок под углом к горизонту.

1. МЕХАНИКА
1.1. Кинематика

Механическое движение и его характеристики

Механика изучает самый простой и наглядный вид движения – механическое движение. Механическое движение – это изменение положения тела в пространстве, относительно других тел с течением времени.

По характеру движения точек различают три вида движения:

а) поступательное – это движение, при котором все точки
тела движутся одинаково и любая прямая, мысленно прове денная в теле, остается параллельна сама себе;

б) вращательное движение, при котором все точки тела движутся по окружностям;

в) колебательное движение – движение, которое повторяется или почти повторяется. В отличие от вращательного движения, колебательное происходит в двух взаимно противоположных направлениях.

По виду траектории различают прямолинейное и криволинейное движения (частный случай криволинейного движения – движение по окружности); по скорости – равномерное и неравномерное; по ускорению – равноускоренное, равнозамедленное, ускоренное.

Основная задача механики – определять положение тела в пространстве (координаты) в любой момент времени.

Материальная точка – это тело, размерами которого можно пренебречь в условиях данной задачи. Тело можно принять за материальную точку, если оно движется поступательно или если его размеры намного меньше расстояния, которые тело проходит.

Систему отсчета вводят для того, чтобы задать положение материальной точки в пространстве. В нее входят: тело отсчета (любое тело), система координат (одномерная, двумерная или трехмерная) и часы.

Траектория – линия, вдоль которой движется тело.


Путь – длина траектории.
Перемещение – это вектор, соединяющий начальное положение тела с конечным. Путь равен перемещению, если тело движется по прямой.

Хорошая новость: в задачах ЕГЭ нет подвохов на различие понятий путь и перемещение. Вам надо просто уметь считать путь для прямолинейного движения по соответствующим формулам.

[1]

  • Тело, брошенное под углом к горизонту, движется по параболе. Длину участка параболы от вас найти не потребуют, это за рамками школьного курса.
  • Если тело движется по окружности, то путь будет равен длине окружности, умноженной на число оборотов. Перемещение равно нулю при целом числе оборотов. Пока таких задач не замечено, но может появиться в категории С. Руководствуйтесь здравым смыслом, сделайте рисунок, чертеж.
Читайте так же:  Теория личности характеристика

Проекции вектора перемещения на оси координат

Знаки проекций перемещения: проекцию считают положительной, если движение от проекции начала вектора к проекции конца происходит по направлению оси, и отрицательной, если против оси. В примере на рисунке sx > 0; sy Забегая вперед.

  • Если в задаче спрашивается: найдите изменение проекции или изменение величины проекции (например, проекции импульса), то действуйте по приведенным выше правилам.
  • Чаще вам встретятся задачи, где надо нарисовать проекции сил на оси координат, (например, тело на наклонной плоскости). Одну ось выбирайте по направлению движения, вторую перпендикулярно. Проекции сил можно нарисовать в черновике со стрелочками для наглядности, чтобы понять, где плюс, где минус. Но дальше надо складывать их алгебраически, как числа.
    Не запутайтесь: не пытайтесь складывать вектор силы с вектором проекции силы. Если выбрали две оси и нарисовали проекции, дальше надо писать уравнение для каждой из осей. Проекции сил, направленные против направления оси, будут с отрицательным знаком.

Уравнение координаты (в общем виде).

Радиус-вектор – вектор, начало которого совпадает с началом координат, а конец – с положением тела в данный момент времени. Проекции радиус-вектора на оси координат определяют координаты тела в данный момент времени. Радиус-вектор позволяет задать положение материальной точки в заданной системе отсчета.

пропускаем, потому что в задачах она не встречается.

Равномерное прямолинейное движение

Равномерное прямолинейное движение – движение, при котором тело за равные промежутки времени совершает равные перемещения. Обычно промежуток времени секунда, или час.

Скорость при равномерном прямолинейном движении

Скорость (м/с) – векторная физическая величина, которая показывает, какое перемещение совершает тело за единицу времени.

Встречается единицы измерения скорости:

1 км/ч = 1000 м / 3600 с

Измерительный прибор спидометр показывает модуль скорости.

График скорости при равномерном прямолинейном движении – прямая, параллельная оси времени (1, 2, 3). На индекс х не обращайте особого внимания. Имеется в виду, что выбрана некая ось координат.

Если график лежит над осью времени (1), то тело движется по направлению оси ОХ. Если график расположен под осью времени, то тело движется против оси Ох (2, 3).

Чем дальше график от оси времени, тем больше модуль скорости (случай 3).

Геометрический смысл перемещения

При равномерном прямолинейном движении перемещение определяют по формуле s = v • t . Такой же результат получим, если вычислим площадь фигуры под графиком скорости в осях ( v , t ). Значит, для определения пути и модуля перемещения при прямолинейном движении необходимо вычислить площадь фигуры под графиком скорости.

График проекции перемещения перемещения от времени.

График проекции перемещения при равномерном прямолинейном движении – прямая, выходящая из начала координат (1, 2, 3).

Если прямая (1) лежит над осью времени, то тело движется по направлению оси ОХ, а если под осью (2, 3), то против оси ОХ.

Чем больше тангенс угла наклона графика, тем больше модуль скорости (1).

График координаты – зависимость координаты тела от времени:


График координаты при равномерном прямолинейном движении – прямые (1, 2, 3).

Если с течением времени координата увеличивается (1, 2), то тело движется по направлению оси ОХ; если координата уменьшается (3), то тело движется против направления оси ОХ.

Чем больше тангенс угла наклона (1), тем больше модуль скорости.

Если графики координат двух тел пересекаются, то из точки пересечения следует опустить перпендикуляры на ось времени и ось координат – так мы узнаем, в какое время тела встретились и координату точки встречи.

Заморочка. Зачем нужна координата, спросите вы. Ведь можно выбрать икс нулевое = 0, это естественно. И формула упростится, будет совпадать с перемещением. Объясняю.
Представьте, соревнуются байкер и велосипедист. Естественно, мотоциклист должен дать фору велосипедисту. Например, 200 метров. Стартуют одновременно по звуку выстрела. Тогда начальная координата байкера 0, а велосипедиста 200. Очень удобно. Чертите график и задача решена! Скорость байкера больше, он обязательно догонит велосипедиста, но это может произойти позже, чем велосипедист успеет доехать до финиша.

Относительность механического движения

Под относительностью мы понимаем зависимость чего-либо от выбора системы отсчета. Например, покой относителен; движение относительно и положение тела относительно.

Правило сложения перемещений. Векторная сумма перемещений.

где Sj – перемещение тела относительно подвижной системы отсчета (ПСО); 2 – перемещение ПСО относительно непод вижной системы отсчета (НСО); s ‘ – перемещение тела относительно неподвижной системы отсчета (НСО).

Сложение векторов, перпендикулярных друг другу – по теореме Пифагора.
Правило треугольника. Правило параллелограмма.

Сложение векторов, расположенных под углом а друг к другу

Ь

По теореме косинусов. Встречается редко.

Векторная сумма скоростей:

где v – скорость тела относительно подвижной системы отсчета (ПСО); и – скорость ПСО относительно неподвижной сис темы отсчета (НСО); и’ – скорость тела относительно непод вижной системы отсчета (НСО).

Относительная скорость. Векторная разность скоростей.

Важно понимать: складываем, если движение тела сложное. Например, лодка плывет на другой берег. По направлению от кормы к носу ее толкает мотор. Вбок ее движет течение. Если лодочник держит курс перпендикулярно берегам, лодку будет сносить по течению и она реально будет двигаться по диагонали, наискосок. Другой вариант, когда курс направлен слегка против течения, чтобы плыть перпендикулярно берегу. Нарисуйте чертежи для обоих случаев самостоятельно. Разберитесь, где катеты, где гипотенуза.

Читайте так же:  Психическое расстройство симптомы у мужчин

Средняя скорость

Неравномерное движение – движение с переменной скоростью. Среднюю скорость всегда вычисляйте по известной простой формуле S = v • t , где S – все перемещение (сумма участков), t – всё время пути.

Не импровизируйте! Например, задача: Катер проплыл 100км со скоростью 50км/ч и еще 100км со скоростью 10км/ч. Расстояния одинаковые, но средняя скорость не будет равна среднему арифметическому. Посчитайте и убедитесь.

Вообще подход к решению задач такой: посмотрите, какие величины даны и вспомните соответствующую формулу, которая связывает эти величины. И пользуйтесь этой формулой.

График проекции скорости в зависимости от времени.

Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение ( ) — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

где

— начальная скорость тела, — скорость тела в момент времени t.

В проекции на ось Ox:

где

— проекция начальной скорости на ось Ox, — проекция скорости тела на ось Ox в момент времени t.

Знаки проекций зависят от направления векторов и оси Ox.

График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения

Скорость при равнопеременном движении.

В векторном виде:

В проекции на ось Ox:

Для равноускоренного движения:

Для равнозамедленного движения:

График проекции скорости в зависимости от времени.

График проекции скорости от времени — прямая линия.

Видео (кликните для воспроизведения).

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения;

где — изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:

(3.9)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8778 —

| 7161 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

График проекции перемещения от времени

«Физика — 10 класс»

Чем отличается равномерное движение от равноускоренного?
Чем отличается график пути при равноускоренном движении от графика пути при равномерном движении?
Что называется проекцией вектора на какую-либо ось?

В случае равномерного прямолинейного движения можно определить скорость по графику зависимости координаты от времени.

Проекция скорости численно равна тангенсу угла наклона прямой x(t) к оси абсцисс. При этом, чем больше скорость, тем больше угол наклона.

Прямолинейное равноускоренное движение.

На рисунке 1.33 изображены графики зависимости проекции ускорения от времени для трёх разных значений ускорения при прямолинейном равноускоренном движении точки. Они представляют собой прямые линии, параллельные оси абсцисс: ах = const. Графики 1 и 2 соответствуют движению, когда вектор ускорения направлен вдоль оси ОХ, график 3 — когда вектор ускорения направлен в противоположную оси ОХ сторону.

При равноускоренном движении проекция скорости зависит от времени линейно: υx = υ0x + axt. На рисунке 1.34 представлены графики этой зависимости для указанных трёх случаев. При этом начальная скорость точки одинакова. Проанализируем этот график.

Проекция ускорения

Из графика видно, что, чем больше ускорение точки, тем больше угол наклона прямой к оси t и соответственно больше тангенс угла наклона, который определяет значение ускорения.

За один и тот же промежуток времени при разных ускорениях скорость изменяется на разные значения.

При положительном значении проекции ускорения за один и тот же промежуток времени проекция скорости в случае 2 увеличивается в 2 раза быстрее, чем в случае 1. При отрицательном значении проекции ускорения на ось ОХ проекция скорости по модулю изменяется на то же значение, что и в случае 1, но скорость уменьшается.

Для случаев 1 и 3 графики зависимости модуля скорости от времени будут совпадать (рис. 1.35).

Используя график зависимости скорости от времени (рис. 1.36), найдём изменение координаты точки. Это изменение численно равно площади заштрихованной трапеции, в данном случае изменение координаты за 4 с Δx = 16 м.

Мы нашли изменение координаты. Если необходимо найти координату точки, то к найденному числу нужно прибавить её начальное значение. Пусть в начальный момент времени х = 2 м, тогда значение координаты точки в заданный момент времени, равный 4 с, равно 18 м. В данном случае модуль перемещения равен пути, пройденному точкой, или изменению её координаты, т. е. 16 м.

[2]

Если движение равнозамедленное, то точка в течение выбранного интервала времени может остановиться и начать двигаться в направлении, противоположном начальному. На рисунке 1.37 показана зависимость проекции скорости от времени для такого движения. Мы видим, что в момент времени, равный 2 с, направление скорости изменяется. Изменение координаты будет численно равно алгебраической сумме площадей заштрихованных треугольников.

Читайте так же:  Анна рэй адептка по призванию

Вычисляя эти площади, мы видим, что изменение координаты равно -6 м, это означает, что в направлении, противоположном оси ОХ, точка прошла большее расстояние, чем по направлению этой оси.

Площадь над осью t берём со знаком «плюс», а площадь под осью t, где проекция скорости отрицательна, — со знаком «минус».

Если в начальный момент времени скорость некоторой точки была равна 2 м/с, то координата её в момент времени, равный 6 с, равна -4 м. Модуль перемещения точки в данном случае также равен 6 м — модулю изменения координаты. Однако путь, пройденный этой точкой, равен 10 м — сумме площадей заштрихованных треугольников, показанных на рисунке 1.38.

Изобразим на графике зависимость координаты х точки от времени. Согласно одной из формул (1.14) кривая зависимости координаты от времени — x(t) — парабола.

Если движение точки происходит со скоростью, график зависимости которой от времени изображён на рисунке 1.36, то ветви параболы направлены вверх, так как ах > 0 (рис. 1.39). По этому графику мы можем определить координату точки, а также скорость в любой момент времени. Так, в момент времени, равный 4 с, координата точки равна 18 м.

Для начального момента времени, проводя касательную к кривой в точке А, определяем тангенс угла наклона α1, который численно равен начальной скорости, т. е. 2 м/с.

Для определения скорости в точке В проведём касательную к параболе в этой точке и определим тангенс угла α2. Он равен 6, следовательно, скорость равна 6 м/с.

График зависимости пути от времени — такая же парабола, но проведённая из начала координат (рис. 1.40). Мы видим, что путь непрерывно увеличивается со временем, движение происходит в одну сторону.

Если движение точки происходит со скоростью, график зависимости проекции которой от времени изображён на рисунке 1.37, то ветви параболы направлены вниз, так как аx

В случае x = 0, ах > 0 и υx > υ0x график зависимости координаты от скорости представляет собой параболу (рис. 1.43).

При этом, чем больше ускорение, тем ветвь параболы будет менее крутой. Это легко объяснить, так как, чем больше ускорение, тем меньше расстояние, которое должна пройти точка, чтобы скорость увеличилась на то же значение, что и при движении с меньшим ускорением.

В случае ах 0 проекция скорости будет уменьшаться. Перепишем уравнение (1.17) в виде

По графику зависимости координаты от времени можно определить значение скорости в любой момент времени, вычисляя тангенс угла наклона касательной к кривой в точке, соответствующей данному моменту времени. Из рисунка 1.46 следует, что в момент времени t1 проекция скорости положительна. В промежутке времени от t2 до t3 скорость равна нулю, тело неподвижно. В момент времени t4 скорость также равна нулю (касательная к кривой в точке D параллельна оси абсцисс). Затем проекция скорости становится отрицательной, направление движения точки изменяется на противоположное.

Если известен график зависимости проекции скорости от времени, можно определить ускорение точки, а также, зная начальное положение, определить координату тела в любой момент времени, т. е. решить основную задачу кинематики. По графику зависимости координаты от времени можно определить одну из самых важных кинематических характеристик движения — скорость. Кроме этого, по указанным графикам можно определить тип движения вдоль выбранной оси: равномерное, с постоянным ускорением или движение с переменным ускорением.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Кинематика — Физика, учебник для 10 класса — Класс!ная физика

Тема урока: «Графическое представление движения»

Тема урока: «Графическое представление движения»

Научить учащихся решать задачи графическим методом. Добиться понимания функциональной зависимости между величинами и научить выражать эту зависимость графическим методом.

Самостоятельная работа № 2 «Прямолинейное равномерное движение» — 12 минут.

План изложения нового материала:

1. Графики зависимости проекции перемещения от времени.

2. Графики зависимости проекции скорости от времени.

3. Графики зависимости координаты от времени.

5. Выполнение графических упражнений.

В каждый данный момент времени движущаяся точка может находиться только в одном определенном положении на траектории. Поэтому ее удаление от начала координат есть некоторая функция времени t. Зависимость между переменными s и t выражается уравнением s(t). Траекторию движения точки можно задать аналитически, т. е. в виде уравнений: s = 2t + 3, s = At или графически.

Графики — «международный язык». Овладение ими имеет большое образовательное значение. Поэтому необходимо научить учащихся не только строить графики, но и анализировать их, читать, понимать какую информацию о движении тела можно получить из графика.

[3]

Рассмотрим, как строятся графики на конкретном примере.

Пример: По одной и той же прямой дороге едут велосипедист и автомобиль. Направим ось х вдоль дороги. Пусть велосипедист едет в положительном направлении оси х со скоростью 25 км/ч, а автомобиль — в отрицательном направлении со скоростью 50 км/ч, причем в начальный момент времени велосипедист находился в точке с координатой 25км, а автомобиль — в точке с координатой 100 км.

Читайте так же:  Заговор чтобы муж ушел от жены

Графиком sx(t) = vxt является прямая, проходящая через начало координат. Если vx > 0, то sx возрастает со временем а если vx О, эта прямая проходит выше оси t, а если vx

Равномерное прямолинейное движение

1. Равномерное прямолинейное движение — движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Слова «любые равные» означают, что за каждый час, за каждую минуту, за каждые 30 минут, за каждую секунду, за каждую долю секунды тело совершает одинаковые перемещения.

Равномерное движение — идеализация, поскольку практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Реальное движение может лишь приближаться к равномерному движению с той или иной степенью точности.

2. Изменение положения тела в пространстве при равномерном движении может происходить с разной быстротой. Это свойство движения — его «быстрота» характеризуется физической величиной, называемой скоростью.

Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения ко времени, за которое это перемещение произошло.

Если за время ​ ( t ) ​ тело совершило перемещение ​ ( vec ) ​, то скорость его движения ​ ( vec ) ​ равна ​ ( vec=frac> ) ​.

Единица скорости: ( [,v,]=frac ) ; ( [,v,]=frac=1frac ) . За единицу скорости принимается 1 м/с — скорость такого равномерного движения, при котором тело за 1 с совершает перемещение 1 м.

Зная скорость равномерного движения, можно найти перемещение за любой промежуток времени: ( vec=vect ) . Вектор скорости и вектор перемещения направлены в одну сторону — в сторону движения тела.

3. Поскольку основной задачей механики является определение в любой момент времени положения тела, т.е. его координаты, необходимо записать уравнение зависимости координаты тела от времени при равномерном движении.

Пусть ( vec ) — перемещение тела (рис. 11). Направим координатную ось ОХ по направлению перемещения. Найдем проекцию перемещения на координатную ось ОХ. На рисунке ​ ( x_0 ) ​ — координата начальной точки перемещения, ​ ( x ) ​ — координата конечной точки перемещения. Проекция перемещения равна разности координат конечной и начальной точек: ​ ( vec_x=x-x_0 ) ​. С другой стороны, проекция перемещения равна проекции скорости, умноженной на время, т.е. ( vec_x=vec_xt ) . Откуда ​ ( x-x_0=vec_xt ) ​ или ( x=x_0+vec_xt ) . Если начальная координата ​ ( x_0 ) ​ = 0, то ​ ( x=vec_xt ) ​.

Полученная формула позволяет определить координату тела при равномерном движении в любой момент времени, если известны начальная координата и проекция скорости движения.

Проекция скорости может быть как положительной, так и отрицательной. Проекция скорости положительна, если направление движения совпадает с положительным направлением оси ОХ (рис. 12). В этом случае ​ ( x>x_0 ) ​. Проекция скорости отрицательна, если тело движется против положительного направления оси ОХ (рис. 12). В этом случае ( x .

4. Зависимость координаты от времени можно представить графически.

Предположим, что тело движется из начала координат вдоль положительного направления оси ОХ с постоянной скоростью. Проекция скорости на ось ОХ равна 4 м/с. Уравнение движения в этом случае имеет вид: ​ ( x ) ​ = 4 м/с · ​ ( t ) ​. Зависимость координаты от времени — линейная. Графиком такой зависимости является прямая линия, проходящая через начало координат (рис. 13).

Для того чтобы её построить, необходимо иметь две точки: одна из них ​ ( t ) ​ = 0 и ​ ( x ) ​ = 0, а другая ​ ( t ) ​ = 1 с, ​ ( x ) ​ = 4 м. На рисунке приведён график зависимости координаты от времени, соответствующий данному уравнению движения.

Если в начальный момент времени координата тела ​ ( x_0 ) ​ = 2 м, а проекция его скорости ​ ( v_x ) ​ = 4 м/с, то уравнение движения имеет вид: ​ ( x ) ​ = 2 м + 4 м/с · ​ ( t ) ​. Это тоже линейная зависимость координаты от скорости, и её графиком является прямая линия, проходящая через точку, для которой ​ ( t ) ​ = 0, ​ ( x ) ​ = 2 м (рис. 14).

В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: ( x ) ​ = 2 м – 4 м/с · ​ ( t ) ​. График зависимости координаты такого движения от времени представлен на рисунке 15.

Таким образом, движение тела может быть описано аналитически, т.е. с помощью уравнения движения (уравнения зависимости координаты тела от времени), и графически, т.е. с помощью графика зависимости координаты тела от времени.

График зависимости проекции скорости равномерного прямолинейного движения от времени представлен на рисунке 16.

5. Ниже приведён пример решения основной задачи кинематики — определения положения тела в некоторый момент времени.

Задача. Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один со скоростью 15 м/с, другой — со скоростью 12 м/с. Определите время и место встречи автомобилей, если в начальный момент времени расстояние между ними равно 270 м.

При решении задачи целесообразно придерживаться следующей последовательности действий:

  1. Кратко записать условие задачи.
  2. Проанализировать ситуацию, описанную в условии задачи:
    — выяснить, можно ли принять движущиеся тела за материальные точки;
    — сделать рисунок, изобразив на нём векторы скорости;
    — выбрать систему отсчёта — тело отсчёта, направления координатных осей, начало отсчёта координат, начало отсчёта времени; записать начальные условия (значения координат в начальный момент времени) для каждого тела.
  3. Записать в общем виде уравнение движения в векторной форме и для проекций на координатные оси.
  4. Записать уравнение движения для каждого тела с учётом начальных условий и знаков проекций скорости.
  5. Решить задачу в общем виде.
  6. Подставить в формулу значения величин и выполнить вычисления.
  7. Проанализировать ответ.
Читайте так же:  Причины нервного срыва

Применим эту последовательность действий к приведённой выше задаче.

Дано: ​ ( v_1 ) ​ = 15 м/с ​ ( v_2 ) ​= 12 м/с ​ ( l ) ​= 270 м. Найти: ​ ( t ) ​ – ? ( x) ​ – ?

Автомобили можно считать материальными точками, поскольку расстояние между ними много больше их размеров и размерами автомобилей можно пренебречь

Система отсчёта связана с Землёй, ось ​ ( Ox ) ​ направлена в сторону движения первого тела, начало отсчёта координаты — т. ​ ( O ) ​ — положение первого тела в начальный момент времени.

Начальные условия: ​ ( t ) ​ = 0; ​ ( x_ ) ​ = 0; ( x_ ) = 270.

Уравнение в общем виде: ​ ( vec=vect ) ​; ​ ( x=x_0+v_xt ) .

Уравнения для каждого тела с учётом начальных условий: ​ ( x_1=v_1t ) ​; ​ ( x_2=l-v_2t ) ​. В месте встречи тел ​ ( x_1=x_2 ) ; следовательно: ​ ( v_1t=l-v_2t ) ​. Откуда ​ ( t=fraccdot t ) ​. Подставив значение времени в уравнение для координаты первого автомобиля, получим значение координаты места встречи автомобилей: ​ ( x ) ​ = 150 м.+v_2>

ПРИМЕРЫ ЗАДАНИЙ

1. Чему равна проекция скорости равномерно движущегося автомобиля, если проекция его перемещения за 4 с равна 80 м?

1) 320 м/с
2) 80 м/с
3) 20 м/с
4) 0,05 м/с

2. Чему равен модуль перемещения мухи за 0,5 мин., если она летит со скоростью 5 м/с?

1) 0,25 м
2) 6 м
3) 10 м
4) 150 м

3. Автомобиль «Рено» проезжает за 1 мин. путь 1,2 км. Автомобиль «Пежо» проезжает за 20 с путь 0,2 км. Сравните значения скорости «Рено» — ​ ( v_1 ) ​ и скорости «Пежо» — ( v_2 ) .

1) ​ ( v_1=v_2 ) ​
2) ​ ( v_1=2v_2 ) ​
3) ( 2v_1=v_2 )
4) ( 1,2v_1=10v_2 )

4. На рисунке приведена столбчатая диаграмма. На ней представлены значения пути, которые при равномерном движении пролетают за одно и то же время муха (1) и воробей (2). Сравните их скорости ​ ( v_1 ) ​ и ( v_2 ) .

1) ​ ( v_1=v_2 ) ​
2) ​ ( v_1=2v_2 ) ​
3) ( 3v_1=v_2 )
4) ( 2v_1=v_2 )

5. На рисунке приведён график зависимости модуля скорости равномерного движения от времени. Модуль перемещения тела за 2 с равен

1) 20 м
2) 40 м
3) 80 м
4) 160 м

6. На рисунке приведён график зависимости пути, пройденного телом при равномерном движении от времени. Модуль скорости тела равен

1) 0,1 м/с
2) 10 м/с
3) 20 м/с
4) 40 м/с

7. На рисунке приведены графики зависимости пути от времени для трёх тел. Сравните значения скорости ​ ( v_1 ) ​, ( v_2 ) и ( v_3 ) движения этих тел.

1) ​ ( v_1=v_2=v_3 ) ​
2) ( v_1>v_2>v_3 ) ​
3) ( v_1 ​
4) ​ ( v_1=v_2 ) , ( v_3

8. Какой из приведённых ниже графиков представляет собой график зависимости пути от времени при равномерном движении тела?

9. На рисунке приведён график зависимости координаты тела от времени. Чему равна координата тела в момент времени 6 с?

1) 9,8 м
2) 6 м
3) 4 м
4) 2 м

10. Уравнение движения тела, соответствующее приведённому в задаче 9 графику, имеет вид

1) ​ ( x=1t ) ​ (м)
2) ( x=2+3t ) (м)
3) ( x=2-1t ) (м)
4) ( x=4+2t ) (м)

11. Установите соответствие между величинами в левом столбце и зависимостью значения величины от выбора системы отсчёта в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) перемещение
Б) время
B) скорость

ЗАВИСИМОСТЬ ОТ ВЫБОРА СИСТЕМЫ ОТСЧЁТА
1) зависит
2) не зависит

12. На рисунке приведён график зависимости координаты тела от времени. Какие выводы можно сделать из анализа графика? Укажите два правильных ответа.

1) тело двигалось все время в одну сторону
2) в течение четырёх секунд модуль скорости тела уменьшался, а затем увеличивался
3) проекция скорости тела все время была положительной
4) проекция скорости тела в течение четырёх секунд была положительной, а затем — отрицательной
5) в момент времени 4 с тело остановилось

Видео (кликните для воспроизведения).

13. Два автомобиля движутся друг за другом равномерно и прямолинейно: один со скоростью 20 м/с, другой — со скоростью 15 м/с. Через какое время второй автомобиль догонит первый, если в начальный момент времени расстояние между ними равно 100 м?

Источники


  1. Архипова, Елена Кризисы семейной жизни / Елена Архипова. — М.: Фарес, 2008. — 112 c.

  2. Учимся думать о себе и о других. — М.: Специальная литература, 2008. — 332 c.

  3. Лемайте, Кристина Как сделать карьеру, или Психология общения на работе / Кристина Лемайте. — М.: Научная книга, 2018. — 356 c.
  4. Слотина, Т.В. Психология любви, или Какого цвета ваша личность? / Т.В. Слотина. — М.: Питер, 2013. — 341 c.
  5. Соколков, Е. А. Психология познания. Методология и методика преподавания / Е.А. Соколков. — М.: Университетская книга, Логос, 2007. — 244 c.
График проекции перемещения от времени
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here