Как выглядит проекция

Самое важное по теме: "как выглядит проекция" с профессиональной точки зрения. Мы собрали, агрегировали и представили в доступном виде всю имеющуюся по теме информацию и предлагаем ее к прочтению.

Как выглядит проекция

§ 20. Проекции точки, лежащей на поверхности предмета

Для построения изображений ряда деталей необходимо уметь находить проекции отдельных точек. Например, трудно вычертить вид сверху детали, приведенной на рис. 139, не строя горизонтальных проекций точек А, В, С, D, Е, F и др.


Рис. 139. Деталь, для построения вида сверху которой необходимо найти проекции точек

Задача нахождения проекций точек по одной, заданной на поверхности предмета, решается следующим образом. Сначала находят проекции поверхности, на которой расположена точка. Затем, проведя линию связи к проекции, где поверхность изображается линией, находят вторую проекцию точки. Третья проекция лежит на пересечении линий связи.

Даны три проекции детали (рис. 140, а). Задана горизонтальная проекция а точки А, лежащей на видимой поверхности. Нужно найти остальные проекции этой точки.


Рис. 140. Построение проекций точек, заданных на поверхности предмета

Прежде всего надо провести вспомогательную прямую. Если даны два вида, то место вспомогательной прямой на чертеже выбирают произвольно, правее вида сверху, так чтобы вид слева оказался на нужном расстоянии от главного вида (рис. 141).


Рис. 141. Расположение третьего вида определяется местом вспомогательной прямой

Если три вида уже построены (рис. 142, а), то место вспомогательной прямой произвольно выбирать нельзя; нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии и через полученную точку k (рис. 142, б) провести под углом 45° отрезок прямой, который и будет вспомогательной прямой.

Если осей симметрии нет, то продолжают до пересечения в точке k1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 142, б).


Рис. 142. Построение вспомогательной прямой

Проведя вспомогательную прямую, приступают к построению проекций точки (см. рис. 140, б).

Фронтальная а’ и профильная а» проекции точки А должны располагаться на соответствующих проекциях поверхности, которой принадлежит точка А. Находят эти проекции. На рис. 140, б они выделены цветом. Проводят линии связи, как указано стрелками. В местах пересечения линий связи с проекциями поверхности находятся искомые проекции а’ и а».

Построение проекций точек В, С, D показано на рис. 140, в линиями связи со стрелками. Заданные проекции точек цветные. Линии связи проводят к той проекции, на которой поверхность изображается в виде линии, а не в виде фигуры. Поэтому сначала находят фронтальную проекцию с’ точки С. Профильная проекция с точки С определяется пересечением линий связи.

Если поверхность ни на одной проекции не изображается линией, то для построения проекций точек надо применять вспомогательную плоскость. Например, дана фронтальная проекция d точки А, лежащей на поверхности конуса (рис. 143, а). Через точку параллельно основанию проводят вспомогательную плоскость, которая пересечет конус по окружности; ее фронтальная проекция — отрезок прямой, а горизонтальная — окружность диаметром, равным длине этого отрезка (рис. 143, б). Проведя к этой окружности из точки а’ линию связи, получают горизонтальную проекцию а точки А.


Рис. 143. Построение проекций точки, заданной на поверхности конуса

Профильную проекцию а» точки А находят обычным способом на пересечении линий связи.

Таким же приемом можно найти проекции точки, лежащей, например, на поверхности пирамиды или шара. При пересечении пирамиды плоскостью, параллельной основанию и проходящей через заданную точку, образуется фигура, подобная основанию. На проекциях этой фигуры лежат проекции заданной точки.

Ответьте на вопросы

1. Под каким углом проводят вспомогательную прямую?

2. Где проводят вспомогательную прямую, если заданы виды спереди и сверху, а надо построить вид слева?

3. Как определить место вспомогательной прямой при наличии трех видов?

4. В чем заключается способ построения проекций точки по одной заданной, если одна из поверхностей предмета изображается линией?

5. Для каких геометрических тел и в каких случаях проекции точки, заданной на их поверхности, находят, пользуясь вспомогательной плоскостью?

Задания к § 20

Упражнение 68

Запишите в рабочей тетради, каким проекциям точек, обозначенных на видах цифрами, соответствуют точки, обозначенные на наглядном изображении буквами в примере, указанном Вам преподавателем (рис. 144, а-г).


Форма записи:


Рис. 144. Задания на определения положения точек
Упражнение 69

На рис. 145, а-б буквами обозначено лишь по одной проекции некоторых из вершин. Найдите в примере, указанном Вам преподавателем, остальные проекции этих вершин и обозначьте их буквами. Постройте в одном из примеров недостающие проекции точек, заданных на ребрах предмета (рис. 145, г и д). Выделите цветом проекции ребер, на» которых находятся точки. Задание выполните на прозрачной бумаге, наложив ее на страницу учебника. Перечерчивать рис. 145 не надо.


Рис. 145. Задания на обозначение проекций вершин и нахождение проекций точек
Читайте так же:  Проекции и касательные
Упражнение 70

Найдите недостающие проекции точек, заданных одной проекцией на видимых поверхностях предмета (рис. 146). Обозначьте их буквами. Заданные проекции точек выделите цветом. Решить задание Вам поможет наглядное изображение. Задание можно выполнить как в рабочей тетради, так и на прозрачной бумаге, наложив ее на страницу учебника. В последнем случае перечерчивать рис. 146 не надо.


Рис. 146. Задания на построение недостающих проекций точек
Упражнение 71

В примере, указанном Вам преподавателем, перечертите три вида (рис. 147). Постройте недостающие проекции точек, заданных на видимых поверхностях предмета. Заданные проекции точек выделите цветом. Обозначьте буквами все проекции точек. Для построения проекций точек воспользуйтесь вспомогательной прямой. Выполните технический рисунок и нанесите на нем заданные точки.


Рис. 147. Задания на построение недостающих проекций точек и выполнение технических рисунков
Упражнение 72

Перечертите два вида (рис. 148), постройте третий. Найдите недостающие проекции точек. Заданные проекции точек выделите цветом. Обозначьте буквами все проекции точек. Линии построений не стирайте.


Рис. 148. Задания на построение третьего вида и недостающих проекций точек
Упражнение 73

В чертежах на рис. 149 допущены ошибки — отсутствуют некоторые линии (видимого и невидимого контуров, а также осевые). Исправьте допущенные ошибки, для чего перечертите заданные изображения и дочертите пропущенные линии. Выделите эти линии цветом. Задание можно выполнить на прозрачной бумаге, наложив ее на рис. 149. Выполните технические рисунки деталей, из чертежа которых Вы дочерчивали линии.


Рис. 149. Задания на дочерчивание недостающих линий

Вы знаете, что фронтальная, горизонтальная и профильная проекции являются изображениями проекционного чертежа. На машиностроительных чертежах проекционные изображения внешней видимой поверхности предмета называют видами.

Вид — это изображение обращенной к наблюдателю видимой поверхности предмета.

Основные виды. Стандарт устанавливает шесть основных ви­дов, которые получаются при проецировании предмета, поме­щенного внутрь куба, шесть граней которого принимают за плоскости проекций (рис. 82). Спроецировав предмет на эти грани, их разворачивают до совмещения с фронтальной плоскостью проекций (рис. 83). На производственных чертежах изделие ка­кой-либо сложной формы может быть изображено в шести ос­новных видах.

Рис. 82. Получение основных видов

Вид спереди (главный вид) размещается на месте фронталь­ной проекции. Вид сверху размещается на месте горизонтальной проекции (под главным видом). Вид слева располагается на мес­те профильной проекции (справа от главного вида). Вид спра­ва размещается слева от главного вида. Вид снизу находится над главным видом. Вид сзади размещается справа от вида слева.

Основные виды, так же как и проекции, располагаются в про­екционной связи. Число видов на чертеже выбирают минималь­ным, но достаточным для того, чтобы точно представить форму изображенного объекта. На видах, при необходимости, допуска­ется показывать невидимые части поверхности предмета с по­мощью штриховых линий (рис. 84).

Главный вид должен содержать наибольшую информацию о предмете. Поэтому деталь необходимо располагать по отноше­нию к фронтальной плоскости проекций так, чтобы видимая по­верхность ее могла быть спроецирована с наибольшим количест­вом элементов формы. Кроме этого, главный вид должен давать ясное представление об особенностях формы, показывая ее силу­эт, изгибы поверхности, уступы, выемки, отверстия, что обеспе­чивает быстрое узнавание формы изображенного изделия.

Рис. 83. Основные виды

Рис. 84. Использование штриховой линии на чертеже для изображения невидимых частей детали

Рис. 85. Местные виды

Расстояние между видами на чертеже выбирают с таким рас­четом, чтобы оставалось место для нанесения размеров.

Местный вид. Кроме основных видов, на чертежах используют местный вид — изображение отдельного, ограниченного места видимой поверхности детали.

Местный вид ограничивается линией обрыва (рис. 85). Если местный вид располагается в проекционной связи с одним из основных видов (рис. 85, а), то он не обозначается. Если местный вид расположен не в проекционной связи с одним из основных видов, то он обозначается стрелкой и буквой русского алфавита (рис. 85, б).

На местных видах можно проставлять размеры.

Способы построения изометрической проекции плоских фигур, геометрических тел и деталей

Для выполнения изометрической проекции любой детали не­обходимо знать правила построения изометрических проекций плоских и объемных геометрических фигур.

Правила построения изометрических проекций геометриче­ских фигур. Построение любой плоской фигуры следует начи­нать с проведения осей изометрических проекций.

При построении изометрической проекции квадрата (рис. 109) из точки О по аксонометрическим осям откладывают в обе сто­роны половину длины стороны квадрата. Через полученные за­сечки проводят прямые, параллельные осям.

При построении изометрической проекции треугольника (рис. 110) по оси X от точки 0 в обе стороны откладывают отрезки, равные половине стороны треугольника. По оси У от точки О откладывают высоту треугольника. Соединяют полученные за­сечки отрезками прямых.

Рис. 109. Прямоугольная и изометрические проекции квадрата

Рис. 110. Прямоугольная и изометрические проекции треугольника

При построении изометрической проекции шестиугольника (рис. 111) из точки О по одной из осей откладывают (в обе сторо­ны) радиус описанной окружности, а по другой — H/2. Через полученные засечки проводят прямые, параллельные одной из осей, и на них откладывают длину стороны шестиугольника. Со­единяют полученные засечки отрезками прямых.

Читайте так же:  Холодным ветром раздувая грусть

Рис. 111. Прямоугольная и изометрические проекции шестиугольника

Рис. 112. Прямоугольная и изометрические проекции круга

При построении изометрической проекции круга (рис. 112) из точки О по осям координат откладывают отрезки, равные его радиусу. Через полученные засечки проводят прямые, парал­лельные осям, получая аксонометрическую проекцию квадрата. Из вершин 1, 3 проводят дуги CD и KL радиусом 3С. Соединяют точки 2 с 4, 3 с С и 3 с D. В пересечениях прямых получаются центры а и б малых дуг, проведя которые получают овал, заме­няющий аксонометрическую проекцию круга.

Используя описанные построения, можно выполнить аксоно­метрические проекции простых геометрических тел (табл. 10).

10. Изометрические проекции простых геометрических тел

[2]

Способы построения изометрической проекции детали:

1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем:

1) построение осей изометрической проекции;

2) построение изометрической проекции формообразующей грани;

3) построение проекций остальных граней посредством изо­бражения ребер модели;

Рис. 113. Построение изометрической проекции детали, начиная от фор­мообразующей грани

4) обводка изометрической проекции (рис. 113).

  1. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 114).
  2. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 115).
  3. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 116).

Аксонометрическую проекцию детали можно выполнять с изображением (рис. 117, а) и без изображения (рис. 117, б) неви­димых частей формы.

Рис. 114. Построение изометрической проекции детали на основе последовательного удаления объемов

Рис. 115 Построение изометрической проекции детали на основе последовательного приращения объемов

Рис. 116. Использование комбинированного способа построения изометрической проекции детали

Рис. 117. Варианты изображения изометрических проекций детали: а — с изображением невидимых частей;
б — без изображения невидимых частей

Проецирование как метод графического отображения формы предмета

Проецирование — это процесс получения проекций предмета на какой-либо поверхности (плоской, цилиндрической, сфериче­ской, конической) с помощью проецирующих лучей.

Проецирование может осуществляться различными методами.

Методом проецирования называется способ получения изо­бражений с помощью определенной, присущей только ему сово­купности средств проецирования (центра проецирования, на­правления проецирования, проецирующих лучей, плоскостей (по­верхностей) проекций), которые определяют результат — соот­ветствующие проекционные изображения и их свойства.

Для того чтобы получить любое изображение предмета на плоскости, необходимо расположить его перед плоскостью про­екций и из центра проецирования провести воображаемые про­ецирующие лучи, пронизывающие каждую точку поверхности предмета. Пересечение этих лучей с плоскостью проекций дает множество точек, совокупность которых создает изображение предмета, называемое его проекцией. Это общее определение рассмотрим на примере проецирования точки, прямой, треуголь­ника и треугольной призмы на плоскость проекций H.

Проецирование точки (рис. 52, а). Возьмем в пространстве произвольную точку А и расположим ее над плоскостью проек­ций H. Проведем через точку А проецирующий луч так, чтобы он пересек плоскость H в некоторой точке а, которая будет являться проекцией точки А. (Здесь и в дальнейшем будем обозначать точки, взятые на предмете, прописными буквами чертежного шрифта, а их проекции — строчными.) Как видим, методом проецирования можно получить проекцию нульмерного объекта— точки.

Проецирование прямой (рис. 52, б). Представим себе прямую как совокупность точек. Используя метод проецирования, прове­дем множество параллельных проецирующих лучей через точки, из которых состоит прямая, до пересечения их с плоскостью про­екций. Полученные проекции точек составят проекцию заданной прямой — одномерного объекта.

Проецирование треугольника (рис. 52, в). Расположим тре­угольник ABC перед плоскостью H. Приняв вершины треуголь­ника за отдельные точки А, В, С, спроецируем каждую из них на плоскость проекций. Получим проекции вершин треугольника — a, b, с. Последовательно соединив проекции вершин (а и b; b и с; с и а), получим проекции сторон треугольника (ab, bc, ca). Часть плоскости, ограниченная изображением сторон треугольника abc, будет являться проекцией треугольника ABC на плоскости H Следовательно, методом проецирования можно получить проек­цию плоской фигуры — двухмерного объекта.

Проецирование призмы (рис. 52, г). Для примера возьмем наклонную треугольную призму и спроецируем ее на плоскость проекций H. В результате проецирования призмы на плоскость H получают изображения (проекции) ее оснований — треуголь­ников — abc и a1b1c1 и боковых граней — прямоугольников abb1a1 и bcc1b1. Так в результате проецирования на плоскости H получают проекцию треугольной призмы. Следовательно, с помощью метода проецирования можно отобразить любой трех­мерный объект.

Читайте так же:  Статус муж ушел

Рис. 52. Проецирование нуль-, одно-, двух- и трехмерных объектов: а — точка;
б — прямая; в — треугольник; г — призма

Видео (кликните для воспроизведения).

Таким образом, методом проецирования можно отобразить на плоскости любой объект (нуль-, одно-, двух- и трехмерный). В этом отношении метод проецирования является универсальным.

Сущность проецирования легче понять, если вспомнить получение изображения в кинотеатре: световой поток лампы кинопроектора проходит через пленку и отбрасывает изображение на полотно. При этом изображение на киноэкране будет в несколько раз больше изображения на кинопленке.

Существует центральное (или перспективное) и параллельное проецирование. Параллельное проецирование бывает прямо­угольным (ортогональным) или косоугольным (табл. 5).

5. Методы проецирования

[1]

Центральное проецирование (перспектива) характеризуется тем, что проецирующие лучи исходят из одной точки (S), назы­ваемой центром проецирования. Полученное изображение назы­вается центральной проекцией.

Перспектива передает внешнюю форму предмета так, как воспринимает его наше зрение.

При центральном проецировании, если предмет находит­ся между центром проецирования и плоскостью проекций, размеры проекции будут больше оригинала; если предмет расположен за плоскостью проекций, то размеры проекции станут меньше действи­тельных размеров изображаемого предмета.

Параллельное проецирование характеризуется тем, что про­ецирующие лучи параллельны между собой. В этом случае предполагается, что центр проецирования (S) удален в бесконеч­ность.

Изображения, полученные в результате параллельного про­ецирования, называются параллельными проекциями.

Если проецирующие лучи параллельны между собой и пада­ют на плоскость проекций под прямым углом, то проецирование называется прямоугольным (ортогональным), а полученные проекции — прямоугольными (ортогональными). Если проеци­рующие лучи параллельны между собой, но падают на плоскость Проекций под углом, отличным от прямого, то проецирование на­зывается косоугольным, а полученная проекция — косоугольной. При проецировании объект располагают перед плоскостью про­екций таким образом, чтобы на ней получилось изображение, несущее наибольшую информацию о форме.

Как выглядит проекция

§ 13. Построение аксонометрических проекций

Построение аксонометрических проекций начинают с проведения аксонометрических осей.

Положение осей. Оси фронтальной ди-метрической проекции располагают, как показано на рис. 85, а: ось х — горизонтально, ось z — вертикально, ось у — под углом 45° к горизонтальной линии.

Угол 45° можно построить при помощи чертежного угольника с углами 45, 45 и 90°, как показано на рис. 85, б.

Положение осей изометрической проекции показано на рис. 85, г. Оси х и у располагают под углом 30° к горизонтальной линии (угол 120° между осями). Построение осей удобно проводить при помощи угольника с углами 30, 60 и 90° (рис. 85, д).

Чтобы построить оси изометрической проекции с помощью циркуля, надо провести ось z, описать из точки О дугу произвольного радиуса; не меняя раствора циркуля, из точки пересечения дуги и оси z сделать засечки на дуге, соединить полученные точки с точкой О.

При построении фронтальной диметрической проекции по осям х и z (и параллельно им) откладывают действительные размеры; по оси у (и параллельно ей) размеры сокращают в 2 раза, отсюда и название «диметрия», что по-гречески означает «двойное измерение».

При построении изометрической проекции по осям х, у, z и параллельно им откладывают действительные размеры предмета, отсюда и название «изометрия», что по-гречески означает «равные измерения».

На рис. 85, в и е показано построение аксонометрических осей на бумаге, разлинованной в клетку. В этом случае, чтобы получить угол 45°, проводят диагонали в квадратных клетках (рис. 85, в). Наклон оси в 30° (рис. 85, г) получается при соотношении длин отрезков 3 : 5 (3 и 5 клеток).


Рис. 85. Способы построения осей аксонометрических проекций

Построение фронтальной диметрической и изометрической проекций. Построить фронтальную диметрическую и изометрическую проекции детали, три вида которой приведены на рис. 86.


Рис. 86. Комплексный чертеж детали

Порядок построения проекций следующий (рис. 87):

1. Проводят оси. Строят переднюю грань детали, откладывая действительные величины высоты — вдоль оси z, длины — вдоль оси х (рис. 87, а).

2. Из вершин полученной фигуры параллельно оси v проводят ребра, уходящие вдаль. Вдоль них откладывают толщину детали: для фронтальной ди-метрической проекции — сокращенную в 2 раза; для изометрии — действительную (рис. 87, б).

3. Через полученные точки проводят прямые, параллельные ребрам передней грани (рис. 87, в).

4. Удаляют лишние линии, обводят видимый контур и наносят размеры (рис. 87, г).

Сравните левую и правую колонки на рис. 87. Что общего и в чем различие данных на них построений?


Рис. 87. Способ построения аксонометрических проекций

Из сопоставления этих рисунков и приведенного к ним текста можно сделать вывод о том, что порядок построения фронтальной диметрической и изометрической проекций в общем одинаков. Разница заключается в расположении осей и длине отрезков, откладываемых вдоль оси у.

Читайте так же:  Тургенев первая любовь характеристика

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры, расположенные горизонтально.

Построение аксонометрической проекции квадрата показано на рис. 88, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у — половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.


Рис. 88. Аксонометрические проекции квадрата: а — фронтальная диметрическая; б — изометрическая

Построение аксонометрической проекции треугольника показано на рис. 89, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/2, а по оси у — его высоту h (для фронтальной диметрической проекции половину высоты h/2). Полученные точки соединяют отрезками прямых.


Рис. 89. Аксонометрические проекции треугольника: а — фронтальная диметрическая; б — изометрическая

Построение аксонометрической проекции правильного шестиугольника показано на рис. 90.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника. По оси у симметрично точке О откладывают отрезки s/2, равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n, полученных на оси у, проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.


Рис. 90. Аксонометрические проекции правильного шестиугольника: а — фронтальная диметрическая; б — изометрическая
Ответьте на вопросы

1. Как располагают оси фронтальной диметрической и изометрической проекций? Как их строят?

2. Какие размеры откладывают вдоль осей фронтальной диметрической и изометрической проекций и параллельно им?

3. Вдоль какой аксонометрической оси откладывают размер уходящих вдоль ребер предмета?

4. Назовите общие для фронтальной диметрической и изометрической проекций этапы построения.

Задания к § 13

Упражнение 40

Постройте аксонометрические проекции деталей, приведенных на рис. 91, а, б, в — фронтальные диметрические, для деталей на рис. 91, г, д, е — изометрические.

Размеры определите по числу клеток, считая, что сторона клетки равна 5 мм.

В ответах дано по одному примеру последовательности выполнения заданий.


Рис. 91. За типе на построение аксонометрических проекций
Упражнение 41

Постройте в изометрической проекции правильные четырехугольную, треугольную и шестиугольную призмы. Основания призм расположены горизонтально, длина сторон основания 30 мм, высота 70 мм.

В ответах дан пример последовательности выполнения задания.

Как выглядит проекция

В общем случае проекции преобразуют точки, заданные в системе координат размерностью n, в системы координат размерностью меньше чем n.

Будем рассматривать случай проецирования трех измерений в два. Проекция трехмерного объекта (представленного в виде совокупности точек) строится при помощи прямых проекционных лучей, которые называются проекторами и которые проходят через каждую точку объекта и, пересекая картинную плоскость, образуют проекцию.

Рис. 3 . 7 . Центральная и параллельная проекции

Определенный таким образом класс проекций существует под названием плоских геометрических проекций, так как проецирование производится на плоскость, а не на искривленную поверхность и в качестве проекторов используются прямые, а не кривые линии.

Многие картографические проекции являются либо не плоскими, либо не геометрическими.

Плоские геометрические проекции в дальнейшем будем называть просто проекциями.

Проекции делятся на два основных класса (рис. 3.7 ):

Полная классификация проекций приведена на рис. 3.8.

Рис. 3.8. Классификация проекций

Параллельные проекции делятся на два типа в зависимости от соотношения между направлением проецирования и нормалью к проекционной плоскости (рис. 3.9. ):

1) ортографические – направления совпадают, т. е. направление проецирования является нормалью к проекционной плоскости;

2) косоугольные – направление проецирования и нормаль к проекционной плоскости не совпадают.

Рис. 3.9. Ортографические и косоугольные проекции

Наиболее широко используемыми видами ортографических проекций является вид спереди, вид сверху(план) и вид сбоку, в которых картинная плоскость перпендикулярна главным координатным осям. Если проекционные плоскости не перпендикулярны главным координатным осям, то такие проекции называются аксонометрическими.

При аксонометрическом проецировании сохраняется параллельность прямых, а углы изменяются; расстояние можно измерить вдоль каждой из главных координатных осей (в общем случае с различными масштабными коэффициентами).

Изометрическая проекция – нормаль к проекционной плоскости, (а следовательно и направление проецирования) составляет равные углы с каждой из главных координатных осей. Если нормаль к проекционной плоскости имеет координаты (a,b,c), то потребуем, чтобы |a| = |b| = |c|, или ± a = ± b = ± c , т. е. имеется 8 направлений (по одному в каждом из октантов), которые удовлетворяют этому условию. Однако существует лишь 4 различных изометрических проекции (если не рассматривать удаление скрытых линий), так как векторы (a, a, a) и (-a,-a,-a) определяют нормали к одной и той же проекционной плоскости.

Изометрическая проекция (рис. 3.10. ) обладает следующим свойством: все 3 главные координатные оси одинаково укорачиваются. Поэтому можно проводить измерения вдоль направления осей с одним и тем же масштабом. Кроме того, главные координатные оси проецируются так, что их проекции составляют равные углы друг с другом (120°).

Читайте так же:  Зависимость от мужчины психология

Рис. 3.10. Изометрическая проекция единичного куба

Косоугольные (наклонные) проекции сочетают в себе свойства ортографических проекций (видов спереди, сверху и сбоку) со свойствами аксонометрии. В этом случае проекционная плоскость перпендикулярна главной координатной оси, поэтому сторона объекта, параллельная этой плоскости, проецируется так, что можно измерить углы и расстояния. Проецирование других сторон объекта также допускает проведение линейных измерений (но не угловых) вдоль главных осей. Отметим, что нормаль к проекционной плоскости и направление проецирования не совпадают.

Двумя важными видами косоугольных проекций являются проекции:

· Кавалье (cavalier) – горизонтальная косоугольная изометрия (военная перспектива);

· Кабине (cabinet) – фронтальная косоугольная диметрия.

Рис. 3.11. Проекция Кавалье

В проекции Кавалье (рис. 3.11. ) направление проецирования составляет с плоскостью угол 45 ° . В результате проекция отрезка, перпендикулярного проекционной плоскости, имеет ту же длину, что и сам отрезок, т. е. укорачивание отсутствует.

Рис. 3.12. Проекция Кабине

Проекция Кабине (рис. 3.12. ) имеет направление проецирования, которое составляет с проекционной плоскостью угол

= arctg(½) (≈26,5°). При этом отрезки, перпендикулярные проекционной плоскости, после проецирования составляют ½ их действительной длины. Проекции Кабине являются более реалистическими, чем проекции Кавалье, так как укорачивание с коэффициентом ½ больше согласуется с нашим визуальным опытом.

Центральная проекция любой совокупности параллельных прямых, которые не параллельны проекционной плоскости, будет сходиться в точке схода. Точек схода бесконечно много. Если совокупность прямых параллельна одной из главных координатных осей, то их точка схода называется главной точкой схода. Имеются только три такие точки, соответствующие пересечениям главных координатных осей с проекционной плоскостью. Центральные проекции классифицируются в зависимости от числа главных точек схода, которыми они обладают, а следовательно и от числа координатных осей, которые пересекают проекционную плоскость.

1. Одноточечная проекция (рис. 3.13 ).

Рис. 3.13. Одноточечная перспектива

2. Двухточечная проекция широко применяется в архитектурном, инженерном и промышленном проектировании.

3. Трехточечные центральные проекции почти совсем не используются, во-первых, потому, что их трудно конструировать, а во-вторых, из-за того, что они добавляют мало нового с точки зрения реалистичности по сравнению с двухточечной проекцией.

16 карт, которые изменят ваш взгляд на мир навсегда

Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook

и ВКонтакте

Ученые по сей день не пришли к единому мнению, как наиболее корректно отобразить рельеф шарообразной планеты на плоском листе бумаги. Это все равно, что нарисовать карту на мандарине, снять кожуру и попытаться расплющить ее в прямоугольник. Ясно, что области, близкие к «полюсам» придется сильно растянуть.

Мы все пользуемся проекцией Герарда Меркатора, но она имеет недочет: чем ближе острова и страны расположены к полюсам, тем больше они кажутся.

Сайт thetruesize.com создан, чтобы мы лучше представили реальные соотношения размеров на карте.

Редакция AdMe.ru узнала для себя много нового.

Истинные размеры Гренландии

Для начала посмотрите на Гренландию. Большой остров, не правда ли? Почти как Южная Америка.

Но при перемещении Гренландии на широту США видно, что она совсем не такая большая. А при переносе на экватор и вовсе понятно, что это просто остров, а не остров-гигант.

А вот что было бы, находись Австралия на широте России и Европы

Кажется, что Австралия небольшого размера. Во-первых, она близко к экватору, во-вторых — она отдалена от других материков и ее не с чем сравнить. Но посмотрите на эти карты.

Видео (кликните для воспроизведения).

Обратите внимание, как изменилась форма Австралии при перемещении на Север. Это потому, что ее часть расположилась за Северным полярным кругом, то есть очень близко к полюсу, и сильно растянулась на проекции.

Источники


  1. Хемфельт, Роберт Выбираем любовь. Как победить созависимость / Роберт Хемфельт , Пол Майер , Фрэнк Минирт. — М.: Триада, 2012. — 352 c.

  2. Мальцева, Т. В. Профессиональное психологическое консультирование / Т.В. Мальцева, И.Е. Реуцкая. — М.: Юнити-Дана, 2010. — 144 c.

  3. Котова, А.К. Как стать правой рукой шефа: настольная книга секретаря по психологии общения и делопроизводству / А.К. Котова. — М.: Феникс, 2013. — 260 c.
  4. Слотина, Т.В. Психология любви, или Какого цвета ваша личность? / Т.В. Слотина. — М.: Питер, 2013. — 341 c.
  5. Василев, Стефан Психология любви / Стефан Василев. — М.: Интерпринт, 1992. — 238 c.
Как выглядит проекция
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here