Множественная линейная регрессия

Самое важное по теме: "множественная линейная регрессия" с профессиональной точки зрения. Мы собрали, агрегировали и представили в доступном виде всю имеющуюся по теме информацию и предлагаем ее к прочтению.

Множественная линейная регрессия

Читайте также:

  1. Вопрос №2 Закон гидродинамики, лежащий в основе движения крови по сосудам. Объемная и линейная скорость движения по сосудам.
  2. Линейная и функциональная структуры – элементарные организационные структуры
  3. Линейная множественная модель
  4. Линейная модель обмена
  5. Линейная модель парной регрессии и корреляции
  6. Линейная одномерная регрессионная модель
  7. Линейная регрессия
  8. Линейная структура управления
  9. Линейная структура, ее достоинства и недостатки
  10. Линейная функция
  11. Множественная корреляция
  12. Множественная корреляция

Парная корреляция и регрессия могут рассматриваться как частный случай отражения связи некоторой зависимой переменной, с одной стороны, и одной из множества независимых переменных – с другой. Когда же требуется показать связь всего множества переменных с результативным признаком Y, говорят о множественной корреляции и о множественной регрессии. На начальных стадиях обычно используют линейные модели множественной регрессии, определяя параметры соответствующих уравнений множественной линейной регрессии.

Современные вычислительные средства позволяют за короткое время получить достаточно много вариантов уравнений множественной регрессии. Анализируя варианты, можно выбрать наилучшую линейную модель и соответствующее уравнение –

где n – количество наблюдаемых объектов; Yi.теор – расчетное значение регрессии, которое представляет собой оценку ожидаемого значения Y при фиксированных значениях переменных X1,X2, . Xk; а1, а2, . аk – параметры (коэффициенты) множественной регрессии, каждый из которых показывает, на сколько единиц изменится Y с изменением соответствующего признака X на единицу при условии, что остальные признаки останутся на прежнем уровне.

Параметры уравнения множественной линейной регрессии, как правило, находятся методом наименьших квадратов, решением системы уравнений. В матричной записи эта система имеет вид

где

.

Получение оценок параметров на ПЭВМ в настоящее время не представляет большой проблемы. Гораздо важнее, насколько та или иная форма связи соответствует реально существующей зависимости между Y, с одной стороны, и множеством X, с другой.

| следующая лекция ==>
Парная корреляция и парная линейная регрессия | Нелинейная регрессия. Коэффициенты эластичности

Дата добавления: 2014-01-03 ; Просмотров: 193 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Линейная модель множественной регрессии 2 (стр. 1 из 2)

1.1. Линейная модель множественной регрессии……………………. 5

1.2. Классический метод наименьших квадратов для модели множественной регрессии…………………………………………..6

2. Обобщенная линейная модель множественной регрессии……………. 8

3. Список использованной литературы…………………………………….10

Временной ряд — это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Каждый уровень временного ряда формируется под воздействием большой числа факторов, которые условно можно подразделить на три группы:

— факторы, формирующую тенденцию ряда;

[3]

— факторы, формирующие циклические колебания ряда;

При различных сочетаниях этих факторов зависимость уров­ней рада от времени может принимать разные формы.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. По всей видимости, эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они форми­руют его возрастающую или убывающую тенденцию.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер., поскольку экономическая деятельность ряда от­раслей зависит от времени года (например, цены на сельскохо­зяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой находится экономика страны.

Некоторые временные ряды не содержат тенденции и цикли­ческую компоненту, а каждый следующий их уровень образуется как сумма среднего уровня рада и некоторой (положительной или отрицательной) случайной компоненты.

Очевидно, что реальные данные не соответствуют полностью ни одной из описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воз­действием тенденции, сезонных колебаний и случайной компо­ненты.

В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой времен­ной ряд представлен как сумма перечисленных компонент, назы­вается аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда.

1.1. Линейная модель множественной регрессии

Парная регрессия может дать хороший результат при моделирова­нии, если влиянием других факторов, воздействующих на объект исследо­вания, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, вводя их в модель, т.е, построить уравнение множественной регрессии.

Читайте так же:  Сила мысли как притянуть человека на расстоянии

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов экономет­рики. В настоящее время множественная регрессия — один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии — построить модель с боль­шим числом факторов, определив при этом влияние каждого из них в отдель­ности, а также совокупное их воздействие на моделируемый показатель.

Общий вид линейной модели множественной регрессии:

где n — объём выборки, который по крайней мере в 3 раза превосходит m -количество независимых переменных;

уi — значение результативной пере­менной в наблюдении I;

хi1i2 , . хim -значения независимых перемен­ных в наблюдении i;

β , β1 , … βm -параметры уравнения регрессии, под­лежащие оценке;

ε — значение случайной ошибки модели множественной регрессии в наблюдении I,

При построении модели множественной линейной регрессии учиты­ваются следующие пять условий:

1. величины хi1i2 , . хim — неслучайные и независимые переменные;

2. математическое ожидание случайной ошибки уравнения регрессии
равно нулю во всех наблюдениях: М (ε) = 0, i= 1,m;

3. дисперсия случайной ошибки уравнения регрессии является постоянной для всех наблюдений: D(ε) = σ 2 = const;

4. случайные ошибки модели регрессии не коррелируют между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): соv(εij .) = 0, i≠j;

5. случайная ошибка модели регрессии — случайная величина, подчиняющаяся нормальному закону распределения с нулевым математическим ожиданием и дисперсией σ 2 .

Матричный вид линейной модели множественной регрессии[3]:

где: — вектор значений результативной переменной размерности n×1

матрица значений независимых переменных размерности n× (m + 1). Первый столбец этой матрицы является единичным, так как в модели регрессии коэффициент β , умножается на единицу;

— вектор значений результативной переменной размерности (m+1)×1

— вектор случайных ошибок размерности n×1

1.2. Классический метод наименьших квадратов для модели множественной регрессии

Неизвестные коэффициенты линейной модели множественной рег­рессии β , β1 , … βm оцениваются с помощью классического метода наи­меньших квадратов, основная идея которого заключается в определении такого вектора оценки Д, который минимизировал бы сумму квадратов отклонений наблюдаемых значений результативной переменной у от мо­дельных значений (т. е. рассчитанных на основании построенной моде­ли регрессии).

Как известно из курса математического анализа, для того чтобы най­ти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Обозначив bi с соответствующими индексами оценки коэффициентов модели βi , i=0,m, имеет функцию m+1 аргумента.

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения оценок параметров линейного уравнения множественной регрессии .

Полученная система нормальных уравнений является квадратной, т. е. количество уравнений равняется количеству неизвестных переменных, поэтому решение системы можно найти с помощью метода Крамера или метода Гаусса,

Решением системы нормальных уравнений в матричной форме будет вектор оценок.

На основе линейного уравнения множественной регрессии могут быть найдены частные уравнения регрессии, т. е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором хi при закреплении остальных факторов на среднем уровне.

При подстановке в эти уравнения средних значений соответствую­щих факторов они принимают вид парных уравнений линейной регрессии.

[1]

В отличие от парной регрессии, частные уравнения регрессии харак­теризуют изолированное влияние фактора на результат, ибо другие факто­ры закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

где bi — коэффициент регрессии для фактора xi ; в уравнении множествен­ной регрессии,

ух1 хm — частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть най­дены средние по совокупности показатели эластичности. которые показывают, на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе из воздействия на результат.

2. Обобщенная линейная модель множественной регрессии

Коренное отличие обобщенной модели от классической состоит только в виде ковариационной квадратной матрицы вектора возмущений: вместо матрицы Σε = σ 2 En для классической модели имеем матрицу Σε = Ω для обобщенной. Последняя имеет произвольные значения ковариаций и дисперсий. Например, ковариационные матрицы классической и обобщенной моделей для двух наблюдений (п=2) в общем случае будут иметь вид:

Формально обобщенная линейная модель множественной регрессии (ОЛММР) в матричной форме имеет вид:

и описывается системой условий:

1. ε – случайный вектор возмущений с размерностью n; X -неслучайная матрица значений объясняющих переменных (матрица плана) с размерностью nх(р+1); напомним, что 1-й столбец этой матрицы состоит из пединиц;

Читайте так же:  Теория личности характеристика

2. M(ε) = 0n – математическое ожидание вектора возмущений равно ноль-вектору;

3. Σε = M(εε’) = Ω, где Ω – положительно определенная квадратная матрица; заметим, что произведение векторов ε‘ε дает скаляр, а произведение векторов εε’ дает матрицу размерностью nxn;

4. Ранг матрицы X равен р+1, который меньше n; напомним, что р+1 — число объясняющих переменных в модели (вместе с фиктивной переменной), n — число наблюдений за результирующей и объясняющими переменными.

Следствие 1. Оценка параметров модели (1) обычным МНК

является несмещенной и состоятельной, но неэффективной (неоптимальной в смысле теоремы Гаусса-Маркова). Для получения эффективной оценки нужно использовать обобщенный метод наименьших квадратов.

Множественная линейная регрессия

Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 10.07.2016
Размер файла 107,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

линейный регрессия переменная детерминация

Составить уравнение линейной регрессии , используя МНК, и найти числовые характеристики переменных.

Составить уравнение линейной регрессии , используя матричный метод.

Вычислить коэффициент корреляции и оценить полученное уравнение регрессии.

Найти оценки параметров .

Найти параметры нормального распределения для статистик и .

Найти доверительные интервалы для и на основании оценок и при уровне значимости б = 0,05.

Вычислить коэффициент детерминации и оценить качество выбранного уравнения регрессии.

Имеются данные по десяти заводам одной отрасли промышленности об уровнях энерговооруженности труда Х (тыс. кВт/ч) и об уровне производительности труда одного рабочего в год Y (тыс. шт. изд.):

Составим уравнение линейной регрессии , используя МНК, и найдем числовые характеристики переменных:

Чтобы найти оценки параметров модели используя 1МНК, запишем систему нормальных уравнений:

где коэффициент ковариации показателя и фактора характеризует плотность связи этих признаков и разброс и рассчитывается за формулой:

средние значения показателя и фактора:

среднее значение произведения показателя и фактора:

дисперсия фактора характеризует разброс признаки вокруг среднего и рассчитывается за формулой:

среднее значение квадратов фактора:

Найдем компоненты 1МНК и результаты занесем к таблице:

Видео удалено.
Видео (кликните для воспроизведения).

Найдем коэффициент ковариации:

Находим оценки параметров модели:

Получим: Подставим найденные параметры в уравнение , будем иметь уравнение линейной регрессии:

[2]

Составить уравнение линейной регрессии , используя матричный метод.

В общем виде однофакторная линейная эконометрическая модель записывается следующим образом:

где вектор наблюдений за результативным показателем:

вектор наблюдений за фактором:

неизвестные параметры, что подлежат определению;

случайная величина ( отклонение, остаток)

Ее оценкой является модель:

вектор оцененных значений результативного показателя;

оценки параметров модели.

Отклонения рассчитывается как различие между наблюдаемыми значение показателя и его значениями, которое рассчитано за составленной моделью, то есть .

По данным таблицы составить систему нормальных уравнений, для чего запишем следующие матрицы:

Найдем матрицу моментов:

Вычислим следующую матрицу:

Составим систему нормальных уравнений:

Решение в матричном виде будет иметь следующий вид:

где обратная матрица к матрице В.

Найдем обратную матрицу по формуле:

Находим решение системы в матричном виде:

Следовательно, регрессионные коэффициенты равны:

На основании полученных оценок параметров составим уравнение производственной функции:

Параметры линейной регрессии были найдены двумя методами, полученные результаты совпадают, можно сделать вывод. Что параметры найдены, верно. Оценим полученные параметры с помощью коэффициента корреляции.

Вычислить коэффициент корреляции ryx:

С целью избежание ошибок спецификации модели рассчитаем коэффициент парной корреляции:

где среднее квадратическое отклонение фактора :

среднее квадратическое отклонение показателя :

Вывод : Линейный коэффициент корреляции принимает значения .

Если — имеем линейную функциональную связь, при — линейная связь отсутствует.

При прямая линейная связь, а при — обратная линейная связь.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

Уравнение множественной регрессии

Назначение сервиса . С помощью онлайн-калькулятора можно найти следующие показатели:

  • уравнение множественной регрессии, матрица парных коэффициентов корреляции, средние коэффициенты эластичности для линейной регрессии;
  • множественный коэффициент детерминации, доверительные интервалы для индивидуального и среднего значения результативного признака;

Кроме этого проводится проверка на автокорреляцию остатков и гетероскедастичность.

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Отбор факторов обычно осуществляется в два этапа:

  1. теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;
  2. количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции). Научно обоснованное решение задач подобного вида также осуществляется с помощью дисперсионного анализа — однофакторного, если проверяется существенность влияния того или иного фактора на рассматриваемый признак, или многофакторного в случае изучения влияния на него комбинации факторов.
Читайте так же:  Бросаю курить как облегчить ломку

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

  1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
  2. Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).
  3. Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью интеркоррелированности факторов является мультиколлинеарность — тесная линейная связь между факторами.

Пример . Постройте регрессионную модель с 2-мя объясняющими переменными (множественная регрессия). Определите теоретическое уравнение множественной регрессии. Оцените адекватность построенной модели.
Решение.
К исходной матрице X добавим единичный столбец, получив новую матрицу X

1 5 14.5
1 12 18
1 6 12
1 7 13
1 8 14

Матрица Y

9
13
16
14
21

Транспонируем матрицу X, получаем X T :

1 1 1 1 1
5 12 6 7 8
14.5 18 12 13 14

Постройте уравнение линейной регрессии прироста заработной платы от производительности труда и уровня инфляции. Проверьте качество построенного уравнения регрессии с надежностью 0,95. Проведите проверку наличия в модели автокорреляции на уровне значимости 0,05.

Решение:
Подготовим данные для вставки из MS Excel (как транспонировать таблицу для сервиса см. Задание №2) .

Включаем в отчет: Проверка общего качества уравнения множественной регрессии (F-статистика. Критерий Фишера, Проверка на наличие автокорреляции),

После нажатия на кнопку Дале получаем готовое решение.
Уравнение регрессии (оценка уравнения регрессии):

Качество построенного уравнения регрессии проверяется с помощью критерия Фишера (п. 6 отчета).

Задача 2.
В таблице представлены данные о ВВП, объемах потребления и инвестициях некоторых стран.

ВВП 16331,97 16763,35 17492,22 18473,83 19187,64 20066,25 21281,78 22326,86 23125,90
Потребление в текущих ценах 771,92 814,28 735,60 788,54 853,62 900,39 999,55 1076,37 1117,51
Инвестиции в текущих ценах 176,64 173,15 151,96 171,62 192,26 198,71 227,17 259,07 259,85

Решение:
Для проверки полученных расчетов используем инструменты Microsoft Excel «Анализ данных…». Пример . На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:

  1. Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.
  2. Рассчитать частные коэффициенты эластичности. Сделать вывод.
  3. Определить стандартизованные коэффициенты регрессии (b-коэффициенты). Сделать вывод.
  4. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
  5. Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.

Решение. Для решения используем онлайн-калькулятор. Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор получается из выражения:
s = (X T X) -1 X T Y
Матрица X

1 3.9 10
1 3.9 14
1 3.7 15
1 4 16
1 3.8 17
1 4.8 19
1 5.4 19
1 4.4 20
1 5.3 20
1 6.8 20
1 6 21
1 6.4 22
1 6.8 22
1 7.2 25
1 8 28
1 8.2 29
1 8.1 30
1 8.5 31
1 9.6 32
1 9 36

Матрица Y

7
7
7
7
7
7
8
8
8
10
9
11
9
11
12
12
12
12
14
14

Матрица X T

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3.9 3.9 3.7 4 3.8 4.8 5.4 4.4 5.3 6.8 6 6.4 6.8 7.2 8 8.2 8.1 8.5 9.6 9
10 14 15 16 17 19 19 20 20 20 21 22 22 25 28 29 30 31 32 36

Умножаем матрицы, (X T X)

Умножаем матрицы, (X T Y)

Находим определитель det(X T X) T = 139940.08
Находим обратную матрицу (X T X) -1


Вектор оценок коэффициентов регрессии равен s = (X T X) -1 X T Y =
Уравнение регрессии
Y = 1.8353 + 0.9459X 1 + 0.0856X 2
Для несмещенной оценки дисперсии проделаем следующие вычисления:
Несмещенная ошибка e = Y — X*s
0.62
0.28
0.38
0.01
0.11
-1
-0.57
0.29
-0.56
0.02
-0.31
1.23
-1.15
0.21
0.2
-0.07
-0.07
-0.53
0.34
0.57

se 2 = (Y — X*s) T (Y — X*s)
Несмещенная оценка дисперсии равна

Оценка среднеквадратичного отклонения равна

Найдем оценку ковариационной матрицы вектора k = σ*(X T X) -1

k(x) = 0.36
0,619 -0,0262 -0,0183
-0,0262 0,126 -0,0338
-0,0183 -0,0338 0,0102
=
0,222 -0,00939 -0,00654
-0,00939 0,0452 -0,0121
-0,00654 -0,0121 0,00366

Дисперсии параметров модели определяются соотношением S 2 i = Kii, т.е. это элементы, лежащие на главной диагонали
С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности, которые определяются по формуле

Читайте так же:  Акт гражданского состояния брак

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции (от 0 до 1)

Связь между признаком Y факторами X сильная
Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора хi при неизменном уровне других факторов определяются по стандартной формуле линейного коэффициента корреляции — последовательно берутся пары yx1,yx2. , x1x2, x1x3.. и так далее и для каждой пары находится коэффициент корреляции

Коэффициент детерминации
R 2 = 0.97 2 = 0.95, т.е. в 95% случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая

Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл: Tтабл (n-m-1;a) = (17;0.05) = 1.74
Поскольку Tнабл Fkp, то коэффициент детерминации статистически значим и уравнение регрессии статистически надежно

Построение парной регрессионной модели

Рекомендации к решению контрольной работы.

Статистические данные по экономике можно получить на странице Россия в цифрах.
После определения зависимой и объясняющих переменных можно воспользоваться сервисом Множественная регрессия. Регрессионную модель с 2-мя объясняющими переменными можно построить используя матричный метод нахождения параметров уравнения регрессии или метод Крамера для нахождения параметров уравнения регрессии. Пример №3 . Исследуется зависимость размера дивидендов y акций группы компаний от доходности акций x1, дохода компании x2 и объема инвестиций в расширение и модернизацию производства x3. Исходные данные представлены выборкой объема n=50.

Тема II. Множественная линейная регрессия
1. Постройте выборочную множественную линейную регрессию показателя на все указанные факторы. Запишите полученное уравнение, дайте ему экономическую интерпретацию.
2. Определите коэффициент детерминации, дайте ему интерпретацию. Вычислите среднюю абсолютную ошибку аппроксимации

и дайте ей интерпретацию.
3. Проверьте статистическую значимость каждого из коэффициентов и всего уравнения в целом.
4. Постройте диаграмму остатков.
5. Постройте доверительные интервалы коэффициентов. Для статистически значимых коэффициентов дайте интерпретации доверительных интервалов.
6. Постройте точечный прогноз значения показателя y при значениях факторов, на 50% превышающих их средние значения.
7. Постройте доверительный интервал прогноза, дайте ему экономическую интерпретацию.
8. Постройте матрицу коэффициентов выборочной корреляции между показателем и факторами. Сделайте вывод о наличии проблемы мультиколлинеарности.
9. Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемых факторов на показатель.

3. Множественная линейная регрессия

Множественный регрессионный анализ является расширением парного регрессионного анализа. О применяется в тех случаям, когда поведение объясняемой, зависимой переменной необходимо связать с влиянием более чем одной факторной, независимой переменной. Хотя определенная часть многофакторного анализа представляет собой непосредственное обобщение понятий парной регрессионной модели, при выполнении его может возникнуть ряд принципиально новых задач.

Так, при оценке влияния каждой независимой переменной необходимо уметь разграничивать ее воздействие на объясняемую переменную от воздействия других независимых переменных. При этом множественный корреляционный анализ сводится к анализу парных, частных корреляций. На практике обычно ограничиваются определением их обобщенных числовых характеристик, таких как частные коэффициенты эластичности, частные коэффициенты корреляции, стандартизованные коэффициенты множественной регрессии.

Затем решаются задачи спецификации регрессионной модели, одна из которых состоит в определении объема и состава совокупности независимых переменных, которые могут оказывать влияние на объясняемую переменную. Хотя это часто делается из априорных соображений или на основании соответствующей экономической (качественной) теории, некоторые переменные могут в силу индивидуальных особенностей изучаемых объектов не подходить для модели. В качестве наиболее характерных из них можно назвать мультиколлинеарность или автокоррелированность факторных переменных.

3.1. Анализ множественной линейной регрессии с помощью

метода наименьших квадратов (МНК)

В данном разделе полагается, что рассматривается модель регрессии, которая специфицирована правильно. Обратное, если исходные предположения оказались неверными, можно установить только на основании качества полученной модели. Следовательно, этот этап является исходным для проведения множественного регрессионного анализа даже в самом сложном случае, поскольку только он, а точнее его результаты могут дать основания для дальнейшего уточнения модельных представлений. В таком случае выполняются необходимые изменения и дополнения в спецификации модели, и анализ повторяется после уточнения модели до тех пор, пока не будут получены удовлетворительные результаты.

На любой экономический показатель в реальных условиях обычно оказывает влияние не один, а несколько и не всегда независимых факторов. Например, спрос на некоторый вид товара определяется не только ценой данного товара, но и ценами на замещающие и дополняющие товары, доходом потребителей и многими другими факторами. В этом случае вместо парной регрессии M(Y/Х = х) = f(x) рассматривается множественная регрессия

Задача оценки статистической взаимосвязи переменных Y и Х1, Х2, . ХР формулируется аналогично случаю парной регрессии. Уравнение множественной регрессии может быть представлено в виде

где X — вектор независимых (объясняющих) переменных; В — вектор параметров уравнения (подлежащих определению); — случайная ошибка (отклонение); Y — зависимая (объясняемая) переменная.

Читайте так же:  Как вернуть любимого в домашних

Предполагается, что для данной генеральной совокупности именно функция f связывает исследуемую переменную Y с вектором независимых переменных X.

Рассмотрим самую употребляемую и наиболее простую для статистического анализа и экономической интерпретации модель множественной линейной регрессии. Для этого имеются, по крайней мере, две существенные причины.

Во-первых, уравнение регрессии является линейным, если система случайных величин (X1, X2, . ХР, Y) имеет совместный нормальный закон распределения. Предположение о нормальном распределении может быть в ряде случаев обосновано с помощью предельных теорем теории вероятностей. Часто такое предположение принимается в качестве гипотезы, когда при последующем анализе и интерпретации его результатов не возникает явных противоречий.

Вторая причина, по которой линейная регрессионная модель предпочтительней других, состоит в том, что при использовании ее для прогноза риск значительной ошибки оказывается минимальным.

Теоретическое линейное уравнение регрессии имеет вид:

, (2.3)

или для индивидуальных наблюдений с номером i:

(2.4)

Здесь В = (b, b1, ,bР) — вектор размерности (р+1) неизвестных параметров bj, j = 0, 1, 2, . р, называется j-ым теоретическим коэффициентом регрессии (частичным коэффициентом регрессии). Он характеризует чувствительность величины Y к изменению Xj. Другими словами, он отражает влияние на условное математическое ожидание M(Y/Х1 = х1, Х2 = х2, …, Хр = xр) зависимой переменной Y объясняющей переменной Хj при условии, что все другие объясняющие переменные модели остаются постоянными. b — свободный член, определяющий значение Y в случае, когда все объясняющие переменные Xj равны нулю.

После выбора линейной функции в качестве модели зависимости необходимо оценить параметры регрессии.

Для того чтобы однозначно можно было бы решить задачу отыскания параметров b, b1, … , bР (т.е. найти некоторый наилучший вектор В), должно выполняться неравенство n > p + 1. Если это неравенство не будет выполняться, то существует бесконечно много различных векторов параметров, при которых линейная формула связи между X и Y будет абсолютно точно соответствовать имеющимся наблюдениям. При этом, если n = p + 1, то оценки коэффициентов вектора В рассчитываются единственным образом — путем решения системы p + 1 линейного уравнения:

(2.5)

Например, для однозначного определения оценок параметров уравнения регрессии Y = bо + b1X1 + b2X2 достаточно иметь выборку из трех наблюдений (1, хi1, хi2, yi), i = 1, 2, 3. В этом случае найденные значения параметров b, b1, b2 определяют такую плоскость Y = bо + b1X1 + b2X2 в трехмерном пространстве, которая пройдет именно через имеющиеся три точки.

С другой стороны, добавление в выборку к имеющимся трем наблюдениям еще одного приведет к тому, что четвертая точка (х41, х42, х43, y4) практически всегда будет лежать вне построенной плоскости (и, возможно, достаточно далеко). Это потребует определенной переоценки параметров.

Таким образом, вполне логичен следующий вывод: если число наблюдений больше минимально необходимой величины, т.е. n > p + 1, то уже нельзя подобрать линейную форму, в точности удовлетворяющую всем наблюдениям. Поэтому возникает необходимость оптимизации, т.е. оценивания параметров b, b1, …, bР, при которых формула регрессии дает наилучшее приближение одновременно для всех имеющихся наблюдений.

В данном случае число  = n p 1 называется числом степеней свободы. Нетрудно заметить, что если число степеней свободы невелико, то статистическая надежность оцениваемой формулы невысока. Например, вероятность надежного вывода (получения наиболее реалистичных оценок) по трем наблюдениям существенно ниже, чем по тридцати. Считается, что при оценивании множественной линейной регрессии для обеспечения статистической надежности требуется, чтобы число наблюдений превосходило число оцениваемых параметров, по крайней мере, в 3 раза.

Видео удалено.
Видео (кликните для воспроизведения).

Прежде чем перейти к описанию алгоритма нахождения оценок коэффициентов регрессии, отметим желательность выполнимости ряда предпосылок МНК, которые позволят обосновать характерные особенности регрессионного анализа в рамках классической линейной многофакторной модели.

Источники


  1. Лазарус Арнольд Мифы о браке / Лазарус Арнольд. — М.: Будущее Земли, 2008. — 992 c.

  2. Станков, А. Г. Что надо знать до брака и в браке / А.Г. Станков. — М.: Медицина, 2007. — 350 c.

  3. Реан, А.А. Общая психология и психология личности / А.А. Реан. — М.: Прайм-Еврознак, 2011. — 705 c.
  4. О чем молчат предки. Осознанное замужество и материнство. Как сохранить семью, или Когда лучше развестись. Разбитая семья (комплект из 3 книг + DVD-ROM). — М.: ИГ «Весь», Хорошо, 2014. — 672 c.
  5. Лидерс, А. Г. Психологическое обследование семьи. Учебное пособие-практикум / А.Г. Лидерс. — М.: НОУ ВПО Московский психолого-социальный университет, МОДЭК, 2015. — 552 c.
Множественная линейная регрессия
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here