Регрессия в эксель

Самое важное по теме: "регрессия в эксель" с профессиональной точки зрения. Мы собрали, агрегировали и представили в доступном виде всю имеющуюся по теме информацию и предлагаем ее к прочтению.

Регрессионный анализ в Microsoft Excel

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

[1]

    Перемещаемся во вкладку «Файл».

Открывается окно параметров Excel. Переходим в подраздел «Надстройки».

В самой нижней части открывшегося окна переставляем переключатель в блоке «Управление» в позицию «Надстройки Excel», если он находится в другом положении. Жмем на кнопку «Перейти».

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Линейная регрессия в программе Excel

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк . В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

    Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».

Открывается небольшое окошко. В нём выбираем пункт «Регрессия». Жмем на кнопку «OK».

Открывается окно настроек регрессии. В нём обязательными для заполнения полями являются «Входной интервал Y» и «Входной интервал X». Все остальные настройки можно оставить по умолчанию.

В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

После того, как все настройки установлены, жмем на кнопку «OK».

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Блог о программе Microsoft Excel: приемы, хитрости, секреты, трюки

Как рассчитать регрессию в Excel

Метод линейной регрессии позволяет нам описывать прямую линию, максимально соответствующую ряду упорядоченных пар (x, y). Уравнение для прямой линии, известное как линейное уравнение, представлено ниже:

Читайте так же:  Рабочая концепция одаренности

ŷ — ожидаемое значение у при заданном значении х,

x — независимая переменная,

a — отрезок на оси y для прямой линии,

b — наклон прямой линии.

На рисунке ниже это понятие представлено графически:

На рисунке выше показана линия, описанная уравнением ŷ =2+0.5х. Отрезок на оси у — это точка пересечения линией оси у; в нашем случае а = 2. Наклон линии, b, отношение подъема линии к длине линии, имеет значение 0.5. Положительный наклон означает, что линия поднимается слева направо. Если b = 0, линия горизонтальна, а это значит, что между зависимой и независимой переменными нет никакой связи. Иными словами, изменение значения x не влияет на значение y.

Часто путают ŷ и у. На графике показаны 6 упорядоченных пар точек и линия, в соответствии с данным уравнением

[3]

На этом рисунке показана точка, соответствующая упорядоченной паре х = 2 и у = 4. Обратите внимание, что ожидаемое значение у в соответствии с линией при х = 2 является ŷ. Мы можем подтвердить это с помощью следу­ющего уравнения:

ŷ = 2 + 0.5х =2 +0.5(2) =3.

Значение у представляет собой фактическую точку, а значение ŷ — это ожидаемое значение у с использованием линейного уравнения при заданном значении х.

Следующий шаг — определить линейное уравнение, максимально соответствующее набору упорядоченных пар, об этом мы говорили в предыдущей статье, где определяли вид уравнения по методу наименьших квадратов.

Использование Excel для определения линейной регрессии

Для того, чтобы воспользоваться инструментом регрессионного анализа встроенного в Excel, необходимо активировать надстройку Пакет анализа. Найти ее можно, перейдя по вкладке Файл –> Параметры (2007+), в появившемся диалоговом окне Параметры Excel переходим во вкладку Надстройки. В поле Управление выбираем Надстройки Excel и щелкаем Перейти. В появившемся окне ставим галочку напротив Пакет анализа, жмем ОК.

Во вкладке Данные в группе Анализ появится новая кнопка Анализ данных.

Чтобы продемонстрировать работу надстройки, воспользуемся данными с предыдущей статьи, где парень и девушка делят столик в ванной. Введите данные нашего примера с ванной в столбцы А и В чистого листа.

Перейдите во вкладку Данные, в группе Анализ щелкните Анализ данных. В появившемся окне Анализ данных выберите Регрессия, как показано на рисунке, и щелкните ОК.

Установите необходимыe параметры регрессии в окне Рег­рессия, как показано на рисунке:

Щелкните ОК. На рисунке ниже показаны полученные результаты:

Эти результаты соответствуют тем, которые мы получили путем самостоя­тельных вычислений в предыдущей статье.

Нелинейная регрессия в Excel

Нелинейная регрессия в Excel

Добрый день, уважаемые читатели блога! Сегодня мы поговорим о нелинейных регрессиях. Решение линейных регрессий можно посмотреть по ССЫЛКЕ.

Данный способ применяется, в основном, в экономическом моделировании и прогнозировании. Его цель – пронаблюдать и выявить зависимости между двумя показателями.

Основными типами нелинейных регрессий являются:

  • полиномиальные (квадратичная, кубическая);
  • гиперболическая;
  • степенная;
  • показательная;
  • логарифмическая.

Также могут применяться различные комбинации. Например, для аналитики временных рядов в банковской сфере, страховании, демографических исследованиях используют кривую Гомпцера, которая является разновидностью логарифмической регрессии.

В прогнозировании с помощью нелинейных регрессий главное выяснить коэффициент корреляции, который покажет нам есть ли тесная взаимосвязь меду двумя параметрами или нет. Как правило, если коэффициент корреляции близок к 1, значит связь есть, и прогноз будет довольно точен. Ещё одним важным элементом нелинейных регрессий является средняя относительная ошибка (А), если она находится в промежутке

На этом, пожалуй, теоретический блок мы закончим и перейдём к практическим вычислениям.

У нас имеется таблица продаж автомобилей за промежуток 15 лет (обозначим его X), количество шагов измерений будет аргумент n, также имеется выручка за эти периоды (обозначим её Y), нам нужно спрогнозировать какова будет выручка в дальнейшем. Построим следующую таблицу:

Для исследования нам потребуется решить уравнение (зависимости Y от X): y=ax 2 +bx+c+e. Это парная квадратичная регрессия. Применим в этом случае метод наименьших квадратов, для выяснения неизвестных аргументов — a, b, c. Он приведёт к системе алгебраических уравнений вида:

Для решения этой системы воспользуемся, к примеру, методом Крамера. Видим, что входящие в систему суммы являются коэффициентами при неизвестных. Для их вычисления добавим в таблицу несколько столбцов (D,E,F,G,H) и подпишем соответственно смыслу вычислений — в столбце D возведём x в квадрат, в E в куб, в F в 4 степень, в G перемножим показатели x и y, в H возведём x в квадрат и перемножим с y.

Получится заполненная нужными для решения уравнения таблица вида.

Далее посчитаем суммы по каждому столбцу — воспользуемся ∑ в программе Excel.

Сформируем матрицу A системы, состоящую из коэффициентов при неизвестных в левых частях уравнений. Поместим её в ячейку А22 и назовём «А=«. Следуем той системе уравнений, которую мы избрали для решения регрессии.

Читайте так же:  Адаптация в группе раннего возраста

То есть, в ячейку B21 мы должны поместить сумму столбца, где возводили показатель X в четвёртую степень — F17. Просто сошлёмся на ячейку — «=F17». Далее нам необходима сумма столбца где возводили X в куб — E17, далее идём строго по системе. Таким образом, нам необходимо будет заполнить всю матрицу.

В соответствии с алгоритмом Крамера наберём матрицу А1, подобную А, в которой вместо элементов первого столбца должны размещаться элементы правых частей уравнений системы. То есть сумма столбца X в квадрате умноженная на Y, сумма столбца XY и сумма столбца Y.

Также нам понадобятся ещё две матрицы — назовём их А2 и А3 в которых второй и третий столбцы будут состоять из коэффициентов правых частей уравнений. Картина будет такова.

Следуя избранному алгоритму, нам нужно будет вычислить значения определителей (детерминантов, D) полученных матриц. Воспользуемся формулой МОПРЕД. Результаты разместим в ячейках J21:K24.

Расчёт коэффициентов уравнения по Крамеру будем производить в ячейках напротив соответствующих детерминантов по формуле: a (в ячейке M22) — «=K22/K21»; b (в ячейке M23) — «=K23/K21»; с (в ячейке M24) — «=K24/K21».

Получим наше искомое уравнение парной квадратичной регрессии:

y=-0,074x 2 +2,151x+6,523

Оценим тесноту линейной связи индексом корреляции.

Для вычисления добавим в таблицу дополнительный столбец J (назовём его y*). Расчёта будет следующей (согласно полученному нами уравнению регрессии) — «=$m$22*B2*B2+$M$23*B2+$M$24». Поместим её в ячейку J2. Останется протянуть вниз маркер автозаполнения до ячейки J16.

Для вычисления сумм (Y-Y усредненное) 2 добавим в таблицу столбцы K и L с соответствующими формулами. Среднее по столбцу Y посчитаем с помощью функции СРЗНАЧ.

В ячейке K25 разместим формулу подсчёта индекса корреляции — «=КОРЕНЬ(1-(K17/L17))».

Видим, что значение 0,959 очень близко к 1, значит между продажами и годами есть тесная нелинейная связь.

Осталось оценить качество подгонки полученного квадратичного уравнения регрессии (индекс детерминации). Он рассчитывается по формуле квадрата индекса корреляции. То есть формула в ячейке K26 будет очень проста — «=K25*K25».

Коэффициент 0,920 близок к 1, что свидетельствует о высоком качестве подгонки.

Последним действием будет вычисление относительной ошибки. Добавим столбец и внесём туда формулу: «=ABS((C2-J2)/C2), ABS — модуль, абсолютное значение. Протянем маркером вниз и в ячейке M18 выведем среднее значение (СРЗНАЧ), назначим ячейкам процентный формат. Полученный результат — 7,79% находится в пределах допустимых значений ошибки

Если возникнет необходимость, по полученным значениям мы можем построить график.

Эконометрика. Линейная Регрессия в MS Excel

На мой взгляд, как студента, эконометрика – это одна из самых прикладных наук из всех, с которыми мне удалось познакомиться в стенах своего университета. С помощью неё, действительно, можно решать задачи прикладного характера в масштабах предприятия. Насколько эффективными будут эти решения – вопрос третий. Суть в том, что большая часть знаний так и останется теорией, а вот эконометрика и регрессионный анализ всё-таки стоит изучить с особым вниманием.

Что объясняет регрессия?

Прежде, чем мы приступим к рассмотрению функций MS Excel, позволяющих, решать данные задачи, хотелось бы вам на пальцах объяснить, что, в сущности, предполагает регрессионный анализ. Так вам проще будет сдавать экзамен, а самое главное, интересней изучать предмет.

Будем надеяться, вы знакомы с понятием функции из математики. Функция – это взаимосвязь двух переменных. При изменении одной переменной что-то происходит с другой. Изменяем X, меняется и Y, соответственно. Функциями описываются различные законы. Зная функцию, мы можем подставлять произвольные значения X и смотреть на то, как при этом изменится Y.

Это имеет большое значение, поскольку регрессия – это попытка объяснить с помощью определённой функции на первый взгляд бессистемные и хаотичные процессы. Так, например, можно выявить взаимосвязь курса доллара и безработицы в России.

Если данную закономерность обнаружить удастся, то по полученной нами в ходе расчетов функции, мы сможем составить прогноз, какой будет уровень безработицы при N-ом курсе доллара по отношению к рублю.
Данная взаимосвязь будет называться корреляцией. Регрессионный анализ предполагает расчет коэффициента корреляции, который объяснит тесноту связи между рассматриваемыми нами переменными (курсом доллара и числом рабочих мест).

Видео (кликните для воспроизведения).

Данный коэффициент может быть положительным и отрицательным. Его значения находятся в пределах от -1 до 1. Соответственно, мы может наблюдать высокую отрицательную или положительную корреляцию. Если она положительная, то за увеличением курса доллара последует и появление новых рабочих мест. Если она отрицательная, значит, за увеличением курса, последует уменьшение рабочих мест.

Регрессия бывает нескольких видов. Она может быть линейной, параболической, степенной, экспоненциальной и т.д. Выбор модели мы делаем в зависимости от того, какая регрессия будет соответствовать конкретно нашему случаю, какая модель будет максимально близка к нашей корреляции. Рассмотрим это на примере задачи и решим её в MS Excel.

Читайте так же:  Что значит отчаяние

Линейная регрессия в MS Excel

Для решения задач линейной регрессии вам понадобится функционал «Анализ данных». Он может быть не включен у вас поэтому его нужно активировать.

  • Жмём на кнопку «Файл»;
  • Выбираем пункт «Параметры»;
  • Жмём по предпоследней вкладке «Надстройки» с левой стороны;

  • Снизу увидим Надпись «Управление» и кнопку «Перейти». Жмём по ней;
  • Ставим галочку на «Пакет анализа»;
  • Жмём «ок».

Пример задачи

Функция пакетного анализа активирована. Решим следующую задачу. У нас есть выборка данных за несколько лет о числе ЧП на территории предприятия и количестве трудоустроенных работников. Нам необходимо выявить взаимосвязь между этими двумя переменными. Есть объясняющая переменная X – это число рабочих и объясняемая переменная – Y – это число чрезвычайных происшествий. Распределим исходные данные в два столбца.

Перейдём во вкладку «данные» и выберем «Анализ данных»

[2]

В появившемся списке выбираем «Регрессия». Во входных интервалах Y и X выбираем соответствующие значения.

Нажимаем «Ок». Анализ произведён, и в новом листе мы увидим результаты.

Наиболее существенные для нас значения отмечены на рисунке ниже.

Множественный R – это коэффициент детерминации. Он имеет сложную формулу расчета и показывает, насколько можно доверять нашему коэффициенту корреляции. Соответственно, чем больше это значение, тем больше доверия, тем удачнее наша модель в целом.

Y-пересечение и Пересечение X1 – это коэффициенты нашей регрессии. Как уже было сказано, регрессия – это функция, и у неё есть определённые коэффициенты. Таким образом, наша функция будет иметь вид: Y = 0,64*X-2,84.

Что нам это даёт? Это даёт нам возможность составить прогноз. Допустим, мы хотим нанять на предприятие 25 работников и нам нужно примерно представить, каким при этом будет количество чрезвычайных происшествий. Подставляем в нашу функцию данное значение и получаем результат Y = 0,64 * 25 – 2,84. Примерно 13 ЧП у нас будет происходить.

Посмотрим, как это работает. Взгляните на рисунок ниже. В полученную нами функцию подставлены фактические значения по вовлеченным работникам. Посмотрите, как близки значения к реальным игрекам.

Вы так же можете построить поле корреляции, выделив область игреков и иксов, нажав на вкладку «вставку» и выбрав точечную диаграмму.

Точки идут вразброс, но в целом двигаются вверх, как будто посередине лежит прямая линия. И эту линию вы так же можете добавить, перейдя во вкладку «Макет» в MS Excel и выбрав пункт «Линия тренда»

Щелкните дважды по появившейся линии и увидите то, о чем говорилось ранее. Вы можете изменять тип регрессии в зависимости от того, как выглядит ваше поле корреляции.

Возможно, вам покажется, что точки рисуют параболу, а не прямую линию и вам целесообразней выбрать другой тип регрессии.

Заключение

Будем надеяться, что данная статья дала вам большее понимание о том, что такое регрессионный анализ и для чего он нужен. Всё это имеет большое прикладное значение.

Пакет анализа Excel (программа «Регрессия»)

Расчет параметров уравнения линейной регрессии, проверку их статистической значимости и построения интервальных оценок можно выполнить значительно быстрее автоматически при использовании Пакета анализа Excel (программа «Регрессия»)

Пусть исходные данные примера 2.1 (расходы на питание – личный доход) представлены в Excel.

Выбираем команду Анализ данных→Регрессия.

В диалоговом окне режимаРегрессиязадаются следующие параметры:

® Входной интервал У– вводится ссылка на ячейки, содержащие данные по результативному признаку.

® Входной интервал Х – вводится ссылка на ячейки, содержащие факторные признаки.

® Метки – установите флажок в активное состояние, если выделены и заголовки столбцов.

® Константа- ноль – установите флажок в активное состояние, если оцениваете регрессионное уравнение без свободного члена.

При необходимости задаются и другие параметры.

Результаты расчетов с использованием инструмента Регрессия выводятся под общим названием Вывод итоговв виде следующих таблиц.

Регрессионная статистика
Множественный R 0,952
R- квадрат 0,907
Нормированный R- квадрат 0,875
Стандартная ошибка 1,817
Наблюдения
Дисперсионный анализ
df SS MS F Значимость F
Регрессия 96,1 96,1 29,12 0,01247
Остаток 9,9 3,3
Итого
Коэффи- циенты Стандартная ошибка t-статис- тика P- зна- чение Нижнее 95% Верхние 95%
Y – пересеч. -1,75 1,65 -1,06 0,36669 -7,001 3,501
X 0,775 0,14361 5,40 0,01247 0,318 1,232

Результаты работы программы «Регрессия» полностью совпадают с полученными ранее расчетами.

При необходимости выводятся предсказанные значения

результативного признака и значения остатков.
ВЫВОД ОСТАТКА
Наблюдение Предсказанное у Остатки
-0,2 1,2
2,9 -0,9
-2
9,1 1,9
12,2 -0,2

Коэффициенты регрессии, их стандартные ошибки и коэффициент детерминации составляют:

a

= -1,75; b=0,775;

= 1,65; =0,143; = 0,907

Результаты регрессионного анализа принято записывать в виде:

ȳ=

-1,75+0,775х ;

= 0,907,

где в скобках указаны стандартные ошибки коэффициентов регрессии.

Статическая значимость коэффициента

= 0,907 устанавливается поF – тесту. Поскольку ЗначимостьF= 0,0124
Читайте так же:  Конфликт матери и ребенка

Обычно проверка значимости коэффициента а не производится. Оценим статистическую значимость коэффициентаb.

Поскольку P – значение = 0,0124

Оценим статистическую значимость коэффициента b. Поскольку Р – значение = 0,000158 2

— коэффициент детерминированности;

sey — стандартная ошибка для оценки y;

F — F-статистика, используемая для определения того, является ли наблюдаемая взаимосвязь между зависимой и независимой переменными случайной или нет;

df — степени свободы, используемые для нахождения F-критических значений в статистической таблице (для определения уровня надежности модели нужно сравнить значения в таблице с F-статистикой функции ЛИНЕЙН);

ssreg — регрессионая сумма квадратов;

ssresid — остаточная сумма квадратов.

Характеристики выводятся на экран дисплея в виде приведенного ниже массива (таблицы):

mn mn-1 m2 m1 b
sen Sen-1 se2 se1 seb
r 2 Seу
F Df
ssreg ssresid

Порядок выполнения расчетов следующий:

1. Вводятся исходные данные или открывается существующий файл, содержащий исходные данные.

2. В рабочем окне Excel выделяется диапазон ячеек 5*(n+1) (5 число строк, (n+1) — число столбцов, n – число показателей факторов) для вывода результатов расчета.

3. Активизируются «Мастер функций» любым из способов:

а) в главном меню выбирается Вставка/Функция;

б) на панели инструментов Стандартная нажимается кнопка (fx)


4. В появившемся окне «Мастер функций шаг 1 из 2» среди категорий выбирается Статистические, среди функций — ЛИНЕЙН шаг 1 из 2 (рис. 3.1.1)

Рис. 3. 1. 1. Диалоговое окно «Мастер функций шаг 1 из 2»

5. В появившемся втором окне «Мастер функций» (рис. 3. 1. 2)

вводятся аргументы, т.е. указываются диапазоны ячеек рабочего окна EXCEL, в которых находятся исходные данные для У и Х, а также значения аргументов константа и статистика.

Рис. 3. 1. 2. Второе диалоговое окно «Мастер функций»

Рис. 3. 1. 3. Результат вычисления функции ЛИНЕЙН

6. Нажимается кнопка ОК. В выделенном диапазоне рабочего окна

Excel появляется результат — численное значение для коэффициента регрессии (b). Чтобы вывести всю статистику следует нажать клавишу , а затем — комбинацию клавиш + + .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10207 —

| 7235 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Метод наименьших квадратов в Excel. Регрессионный анализ

Метод кратчайших квадратов (МНК) принадлежит к сфере регрессионного теста. Он обладает большинство внедрений, ведь дает возможность воплотить подведенное спектакль указанной функции альтернативными наиболее легкими. МНК имеет возможность очутиться весьма невредным при переработке исследований, и его интенсивно введут для анализы 1 величин по итогам измерений альтернативных, вмещающих мимовольные опечатки. Из этой заметки вы выведываете, как воплотить в жизнь исчисления по методу кратчайших квадратов в Excel.

Постановка проблемы на определенном образце

Предположим, есть 2 показателя X и Y. Вдобавок Y находится в зависимости от X. Ведь МНК интересует нас на взгляд регрессионного оценка (в Excel его методы реализуются за счет вмонтированных функций), тогда следует зараз ведь перейти к обсуждению именной проблемы.

Итак, пускай X — торговая зона продовольственного маркета, меримая в квадратных метрах, а вот Y — годовой товарооборот, ориентируемый в миллионах руб..

Требуется выполнить мониторинг, каковой товарооборот (Y) станет у маркета, в случае если у него какая-нибудь торговая зона. Бесспорно, что функция Y = f (X) возрастающая, ведь гипермаркет реализовывает чаще товаров, нежели ларек.

Несколько текстов о корректности начальных сведений, оборотных для исчезновения

Допустим, у нас имеется список, возведенная по достоверным сведениям для n маркетов.

Согласно математической статистике, итоги будут иметься более или менее корректными, в случае если изучаются сведения по впрочем б 5-6 объектам. А также, невозможно ввести «неестественные» итоги. Например, лучший маленький бутик имеет возможность обладать товарооборот в разы больший, нежели товарооборот наибольших торговых пикселей класса «масмаркет».

Суть метода

Данные таблицы возможно изобразить на декартовой поверхности в качестве пикселей M1 (x1, y1), … Mn (xn, yn). В настоящее время заключение проблемы сведется к подбору аппроксимирующей функции y = f (x), располагающей график, идущий как возможно поближе к точкам M1, M2, ..Mn.

Конечно, применяют многочлен важной степени, однако подобный вариант включая труднореализуем, а также запросто некорректен, ведь не станет отбивать ведущую веянию, какую и должно выявить. Наиболее благоразумным заключением представляет собой исследование буквальной у = ax + b, какая наилучшим образом приближает опытные сведения, a вернее, коэффициентов — a и b.

Оценка точности

При абсолютно любой аппроксимации необычную эпохальность обретает анализа ее точности. Обозначим сквозь ei разницу (отклонение) меж опытными и функциональными значениями для точки xi, т. е. ei = yi — f (xi).

Очевидно, что для анализы точности аппроксимации применяют необходимую сумму отклонений, т. е. в момент выбора буквальной для приближенного впечатления зависимости X от Y должно уделять основное внимание той, у какой кратчайшее величина необходимой суммы ei во всех без исключения рассматриваемых точках. Ведь, не все так запросто, ведь в одном ряду с лестными отклонениями буквально будут находиться и негативные.

Читайте так же:  Панические атаки симптомы признаки лечение

Решить вопрос возможно, применяя модули отклонений или же их квадраты. Завершающий способ обрел более широченное распространение. Он в ход идет во множества областях, в том числе регрессионный анализ (в Excel его продажа исполняется за счет 2-х вмонтированных функций), и давным-давно доказал собственную отдача.

Метод кратчайших квадратов

В Excel, как нам известно, есть вмонтированная функция автосуммы, дающая возможность определить уровни всех без исключения уровней, находящихся в удаленном промежутке. Следовательно, ничто не навредит для нас рассчитать величина выражения (e12 + e22 + e32+ … en2).

В математической записи это обладает образец:

Ведь с самого начала было решено об аппроксимировании за счет буквальной, то насчитываем:

Следовательно, дилемма пребывания буквальной, какая наилучшим образом описывает определенную зависимость величин X и Y, сводится к исчислению минимального количества функции 2-х непостоянных:

Чтобы достичь желаемого результата надо приравнять к нулю приватные производные по новым непостоянным a и b, и решить примитивную конструкцию, состоящую из 2-х уравнений с двумя анонимными облика:

После нехитрых преобразований, в том числе деление на два и манипуляции с суммами, получим:

Решая ее, в частности, методом Крамера, покупаем стационарную точку с какими-то коэффициентами a* и b*. Именно это имеется минимальное количество, т. е. для исчезновения, каковой товарооборот станет у маркета при конкретной площади, подойдет прямая y = a*x + b*, являющая собой регрессионную модель для образца, о каком проходит речь. Еще бы, она не даст возможность обнаружить верный исход, однако может помочь заполучить спектакль про то, окупится ли покупка в долг маркета именной площади.

Как реализоавать способ кратчайших квадратов в Excel

В «Эксель» есть функция для вычисления уровни по МНК. Она обладает ближайший образец: «ТЕНДЕНЦИЯ» (известн. уровни Y; известн. уровни X; ранее не известные уровни X; конст.). Используем формулу вычисления МНК в Excel к нашей таблице.

Чтобы достичь желаемого результата в ячейку, в какой обязан быть отражен исход вычисления по методу кратчайших квадратов в Excel, используем символ «=» и выкарабкаем функцию «ТЕНДЕНЦИЯ». В открывшемся окошке наполним надлежащие поля, выделяя:

  • диапазон ведомых уровней для Y ( в этом примере сведения для товарооборота);
  • диапазон x1, …xn, т. е. величины торговых площадей;
  • и ведомые, и анонимные уровни x, для какого должно проверить величину товарооборота (сообщение про их месторасположении на действующем листе см. затем).

А также, в формуле имеется закономерная непостоянная «Конст». В случае если использовать в надлежащее для нее поле один, то это будет значить, что вытекает воплотить исчисления, думая, что b = 0.

Если должно выведать мониторинг для наиболее нежели 1-го уровни x, то опосля ввода формулы вытекает нажать не на «Ввод», а вот должно набрать на клавиатуре (клаве) комбинацию «Shift» + «Control»+ «Enter» («Ввод»).

Некоторые качества

Регрессионный анализ быть может общедоступен в том числе чайникам. Формула Excel для исчезновения уровни массива анонимных непостоянных — «ТЕНДЕНЦИЯ» — имеет возможность использоваться в том числе теми, кто вовек не слышал о методе кратчайших квадратов. Необходимо запросто быть в курсе какие-либо качества ее деятельности. Например:

Функция «ПРЕДСКАЗ»

Регрессионный анализ в Excel реализуется за счет немногих функций. 1 из них именуется «ПРЕДСКАЗ». Она подобна «ТЕНДЕНЦИИ», т. е. предоставляет исход исчислений по методу кратчайших квадратов. Ведь всего для 1-го X, для какого анонимно величина Y.

Видео (кликните для воспроизведения).

Теперь вы понимаете формулы в Excel для чайников, дающие возможность спрогнозировать значение грядущего уровни какого-нибудь показателя в соответствии линейному тренду.

Источники


  1. Гретхен Рубин Проект Счастье. Мечты. План. Новая жизнь / Гретхен Рубин. — М.: Эксмо, 2013. — 512 c.

  2. Молодой семье. Энциклопедия семейной жизни. — М.: Гриф, 2010. — 672 c.

  3. Ефимова, Н. С. Психология общения / Н.С. Ефимова. — М.: Форум, Инфра-М, 2017. — 192 c.
  4. Воронова, Мария Клиника измены. Семейная кухня эпохи кризиса / Мария Воронова. — М.: Астрель, Полиграфиздат, Neoclassic, 2011. — 352 c.
  5. Кошевая, И. П. Профессиональная этика и психология делового общения / И.П. Кошевая, А.А. Канке. — М.: Форум, Инфра-М, 2016. — 304 c.
Регрессия в эксель
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here