Значение параметров уравнения регрессии

Самое важное по теме: "значение параметров уравнения регрессии" с профессиональной точки зрения. Мы собрали, агрегировали и представили в доступном виде всю имеющуюся по теме информацию и предлагаем ее к прочтению.

оценка значимости параметров парного уравнения регрессии

этапы эконометрического исследования

1) Спецификация моделей.

2) Обеспечение модели информацией.

3) Оценка параметров моделей.

4) Верификация моделей (оценка прочности и адекватности).

5) Оценка прогнозных свойств модели.

(Постановка проблемы-сбор данных и анализ их качества-спецификация модели-оценка параметров-интерпретация результатов)

4. спецификация модели, ее суть и назначение

для начала на основе кол-ва факторов вкл в уравн определяется вид регрессии – простая(парная) и множественная. Люб эк исслед начинается со спец модели – т.е. с формулир вида модели, исходя из соотв связи между перемен

Из круга факторов выделяются наиболее влият факторы +возмущение=случ величина включает влиян не учтенных факторов, чем меньше ошибка тем удачнее выбрана модель. Ошибк специфик — неправильн выбор ф-ции+не учтенные сущ факторы. Выбор модели 1.графич метод(поле корреляции)2.аналит.метод(на осн материальн природы связи признаков)3.эксперементальный(сравнение остат дисперсий,чем меньше тем удачнее модель)

3. Показательная Y(X)=e A 0+ A 1* X 1+ A 2* X 2+…+ Ak * Xk

5.Оценка параметров линейной регрессии

После выбора модели для построения регрессии необходимо произвести оценку параметров a и b

1)графический метод

через две точки проводится линия – регрессия, точка пересеч с оу – параметр а, угол наклона линии регресии

2)МНК позвол получить такие а и б при кот сумма квадратов отклонений факт у от теорет у будет минимально

след e(ост)→min

Чтобы ф стрем к мин необх вычислить частные произв по каждому из параметров а и б и приравнять к 0получим систему нормальных уравнений a*n + b∑x = ∑y

a∑x + b∑x 2 = ∑y*x Откуда:

a=

b коэфф регрессии показывает средн изменение результата при изменении фактора на 1 ед

а не интерпретируется, но знак если +то рез-т изменяется медленнее чем фактор, если – то резульат изм бстрее фактора

оценка значимости параметров парного уравнения регрессии

После того как построено уравнение необходимо проверить значимость уравн в целом и его параметров.с помощью F-крит фишера выдвигается нулевая гипотеза Н0 о том, что b=0, т.е. х не оказывает влияния на у

Общая SS — общая СКО yi от их среднего значения Ῡ (y-yср) 2 = Объясненная SS- СКО прогн. Знач. ŷi вокруг среднего значения Ῡ (утеор-уср) 2 + Остаточная SS — остаточная СКО (у-утеор) 2

Необх произвести дисперс анализ – если х не оказ влияния на у то линия регрессии паралл ох и

[1]

утеор=уср→SSфакт=0, если все точки поля корр лежат на линии регрессии то зависимость функциональна и SSост=0 любая СКО связана с df – кол-во степ свободы, для каждого СКО свое df

Ост СКО – (n-1), Факт СКО – (m =кол-во факторов), общ СКО – (n-m-1)

Разделив СКО на df получим средний квадрат отклонений или дисперсию на одну степень свободы SE, что приводит дисперсии к сравнимому виду и сопоставив факторную и остаточную SE получим Fкритерий.

для опровержения гипотеззы необх сравнить Fф и Fт – макс величина отнош дисперсий кот может иметь место при их расхождении для данного уровня вероятности.по таблице

Если F>Fтабл то гипотеза опровергается и коэф регрессии ≠0 и уравнение значимо

Для расчета значимости параметра b рассчитывается его ст ошибка

ведичина ошибки совместно с t-критерием стьюдента исп для проверки существенности коэфф регрессии b, где его величина сравнивается с его ст ошибкой т.е опред tфакт

сравнивается с tтабл если больше табличного значения – то коэффициент регрессии/параметр b является существенным и значимым

Оценка значимости параметров уравнения парной линейной регрессии

Парная регрессия представляет собой регрессию между двумя переменными

—у и х, т.е. модель вида + Е

, где у — результативный признак,т.е зависимая переменная; х — признак-фактор.

Линейная регрессия сводится к нахождению уравнения вида или

Уравнение вида позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х.

Построение линейной регрессии сводится к оценке ее пара­метров а и в.

Оценки параметров линейной регрессии могут быть найдены разными методами.

1.

2.

Параметр b называется коэффициентом регрессии. Его вели­чина показывает

Читайте так же:  Конфликт тройничного нерва

среднее изменение результата с изменением фактора на одну единицу.

Формально а — значение у при х = 0. Если признак-фактор

не имеет и не может иметь нулевого значения, то вышеуказанная

трактовка свободного члена, а не имеет смысла. Параметр, а может

не иметь экономического содержания. Попытки экономически

интерпретировать параметр, а могут привести к абсурду, особенно при а 0,

то относительное изменение результата происходит медленнее, чем изменение

проверка качества найденных параметров и всей модели в целом:

-Оценка значимости коэффициента регрессии (b) и коэффициента корреляции

-Оценка значимости всего уравнения регрессии. Коэффициент детерминации

Уравнение регрессии всегда дополняется показателем тесноты связи. При

использовании линейной регрессии в качестве такого показателя выступает

линейный коэффициент корреляции rxy. Существуют разные

модификации формулы линейного коэф­фициента корреляции.

Линейный коэффициент корреляции находится и границах: -1≤.rxy

≤ 1. При этом чем ближе r к 0 тем слабее корреляция и наоборот чем

ближе r к 1 или -1, тем сильнее корреляция, т.е. зависимость х и у близка к

линейной. Если r в точности =1или -1 все точки лежат на одной прямой.

Если коэф. регрессии b>0 то 0 ≤.rxy ≤ 1 и

ОЦЕНКА СУЩЕСТВЕННОСТИ ПАРАМЕТРОВ ЛИНЕЙНОЙ РЕГРЕССИИ.

Оценка значимости уравнения регрессии в целом дается с по­мощью F-критерия

Фишера. При этом выдвигается нулевая ги­потеза, что коэффициент регрессии равен

нулю, т. е. b = 0, и следовательно, фактор х не оказывает

влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии.

Центральное место в нем занимает разложе­ние общей суммы квадратов отклонений

переменной у от средне го значения у на две части —

«объясненную» и «необъясненную»:

— общая сумма квадратов отклонений

— сумма квадратов

отклонения объясненная регрессией

— остаточная сумма квадратов отклонения.

Любая сумма квадратов отклонений связана с числом степе­ней свободы, т.

е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности nис числом определяемых по ней констант. Применительно к исследуемой проблеме число cтепеней свободы должно показать, сколько независимых откло­нений из п возможных требуется для

образования данной суммы квадратов.

Дисперсия на одну степень свободы D.

F-отношения (F-критерий):

Ecли нулевая гипотеза справедлива, то факторная и остаточная дисперсии не

отличаются друг от друга. Для Н необходимо опровержение, чтобы

факторная дисперсия превышала остаточную в несколько раз. Английским

статистиком Снедекором раз­работаны таблицы критических значений F-отношений

при разных уровнях существенности нулевой гипотезы и различном числе степеней

[3]

свободы. Табличное значение F-критерия — это максимальная величина отношения

дисперсий, которая может иметь место при случайном их расхождении для данного

уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения

признается достоверным, если о больше табличного. В этом случае нулевая

гипотеза об отсутствии связи признаков отклоняется и делается вывод о

существенности этой связи: Fфакт > Fтабл Н

Если же величина окажется меньше табличной Fфакт‹, Fтабл

, то вероятность нулевой гипотезы выше заданного уровня и она не может быть

отклонена без серьезного риска сделать неправильный вывод о наличии связи. В

этом случае уравнение регрессии считается статистически незначимым. Но

Дата добавления: 2016-07-29 ; просмотров: 1325 | Нарушение авторских прав

Уравнение регрессии

Определение и уравнение регрессии

Чаще всего регрессия задается уравнением, которое показывает зависимость между двумя группами числовых переменных. Уравнения бывают двух видов: линейные и нелинейные.

Регрессия бывает двух видов: парная (или двухфакторная) и множественная (или многофакторная). Такие регрессии отличаются друг от друга видом уравнения и количестве независимых переменных. Уравнения парной регрессии относятся к уравнениям регрессии первого порядка, а уравнения множественной регрессии — к нелинейным уравнениям регрессии.

Параметры уравнения линейной регрессии

находятся методом наименьших квадратов из системы нормальных уравнений

Примеры решения задач

Задание Пусть задана зависимость между выработкой продукции на одного работника и удельного веса рабочих высокой квалификации:

Определите теоретическое уравнение парной регрессии.

Решение Выборка состоит из 10 предприятий отрасли, то есть . Уравнение парной регрессии будем искать в виде:

Для определения параметров модели, будем использовать метод наименьших квадратов. Система нормальных уравнений для определения неизвестных величин

и имеет вид:

Вычислим необходимые значения, для этого построим следующую таблицу:

Составляем систему нормальных уравнений:

Решая полученную систему линейных уравнений любым из известных методов, будем иметь:

Читайте так же:  Саморазвитие с чего начать пошаговая инструкция

Тогда искомое уравнение

[2]

Ответ
Задание Имеются следующие данные разных стран об индексе розничных цен на продукты питания () и индексе промышленного производства ():

Необходимо для характеристики зависимости

от рассчитать параметры следующих функций: а) линейной; б) степенной; в) равносторонней гиперболы. Решение а) для построения линейной регрессии заполним таблицу:
Видео удалено.
Видео (кликните для воспроизведения).

Для нахождения параметров регрессии, решаем систему нормальных уравнений (1):

То есть уравнение линейной регрессии

.

б) Степенная регрессия имеет вид

.

Прологарифмируем это равенство десятичным логарифмом:

По способу наименьших квадратов строим систему нормальных уравнений для определения параметров регрессии:

Построим расчетную таблицу:

Подставляем в систему:

Решая полученную систему, будем иметь:

Тогда искомое уравнение

в) Уравнение равносторонней гиперболы

.

Для определения параметров этого уравнения используется система нормальных уравнений:

Составим таблицу расчетных данных:

Получаем следующую систему нормальных уравнений:

Решая записанную систему, получаем следующие значения параметров регрессии:

Уравнение регрессии (стр. 1 из 3)

Изучение корреляционных зависимостей основывается на исследовании таких связей между переменными, при которых значения одной переменной, ее можно принять за зависимую переменную, «в среднем» изменяются в зависимости от того, какие значения принимает другая переменная, рассматриваемая как причина по отношению к зависимой переменной. Действие данной причины осуществляется в условиях сложного взаимодействия различных факторов, вследствие чего проявление закономерности затемняется влиянием случайностей. Вычисляя средние значения результативного признака для данной группы значений признака-фактора, отчасти элиминируется влияние случайностей. Вычисляя параметры теоретической линии связи, производится дальнейшее их элиминирование и получается однозначное (по форме) изменение «y» с изменением фактора «x».

Для исследования стохастических связей широко используется метод сопоставления двух параллельных рядов, метод аналитических группировок, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы. В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный. Для ее решения применяют методы корреляционного и регрессионного анализа.

ГЛАВА 1. УРАВНЕНИЕ РЕГРЕССИИ: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

1.1. Уравнение регрессии: сущность и типы функций

Регрессия (лат. regressio- обратное движение, переход от более сложных форм развития к менее сложным) — одно из основных понятий в теории вероятности и математической статистике, выражающее зависимость среднего значения случайной величины от значений другой случайной величины или нескольких случайных величин. Это понятие введено Фрэнсисом Гальтоном в 1886. [9]

Теоретическая линия регрессии — это та линия, вокруг которой группируются точки корреляционного поля и которая указывает основное направление, основную тенденцию связи. [2, с.256]

Теоретическая линия регрессии должна отображать изменение средних величин результативного признака «y» по мере изменения величин факторного признака «x» при условии полного взаимопогашения всех прочих – случайных по отношению к фактору «x» — причин. Следовательно, эта линия должна быть проведена так, чтобы сумма отклонений точек поля корреляции от соответствующих точек теоретической линии регрессии равнялась нулю, а сумма квадратов этих отклонений была ба минимальной величиной.

y=f(x) — уравнение регрессии — это формула статистической связи между переменными.

Прямая линия на плоскости (в пространстве двух измерений) задается уравнением y=a+b*х. Более подробно: переменная y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную x. Константу иногда называют также свободным членом, а угловой коэффициент — регрессионным или B-коэффициентом. [8]

Важным этапом регрессионного анализа является определение типа функции, с помощью которой характеризуется зависимость между признаками. Главным основанием должен служить содержательный анализ природы изучаемой зависимости, ее механизма. Вместе с тем теоретически обосновать форму связи каждого из факторов с результативным показателем можно далеко не всегда, поскольку исследуемые социально-экономические явления очень сложны и факторы, формирующие их уровень, тесно переплетаются и взаимодействуют друг с другом. Поэтому на основе теоретического анализа нередко могут быть сделаны самые общие выводы относительно направления связи, возможности его изменения в исследуемой совокупности, правомерности использования линейной зависимости, возможного наличия экстремальных значений и т.п. Необходимым дополнением такого рода предположений должен быть анализ конкретных фактических данных.

Приблизительно представление о линии связи можно получить на основе эмпирической линии регрессии. Эмпирическая линия регрессии обычно является ломанной линией, имеет более или менее значительный излом. Объясняется это тем, что влияние прочих неучтенных факторов, оказывающих воздействие на вариацию результативного признака, в средних погашается неполностью, в силу недостаточно большого количества наблюдений, поэтому эмпирической линией связи для выбора и обоснования типа теоретической кривой можно воспользоваться при условии, что число наблюдений будет достаточно велико. [2, с.257]

Читайте так же:  Флегматик в отношениях

Одним из элементов конкретных исследований является сопоставление различных уравнений зависимости, основанное на использовании критериев качества аппроксимации эмпирических данных конкурирующими вариантами моделей Наиболее часто для характеристики связей экономических показателей используют следующие типы функций:

Оценка параметров уравнения регреcсии. Пример

Задание:
По группе предприятий, выпускающих один и тот же вид продукции, рассматриваются функции издержек:
y = α + βx;
y = α x β ;
y = α β x ;
y = α + β / x;
где y – затраты на производство, тыс. д. е.
x – выпуск продукции, тыс. ед.

Требуется:
1. Построить уравнения парной регрессии y от x :

  • линейное;
  • степенное;
  • показательное;
  • равносторонней гиперболы.

2. Рассчитать линейный коэффициент парной корреляции и коэффициент детерминации. Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции, составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный интервал.
7. Оценить модель через среднюю ошибку аппроксимации.

1. Уравнение имеет вид y = α + βx
1. Параметры уравнения регрессии.
Средние значения

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 = 0.94 2 = 0.89, т.е. в 88.9774 % случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая

x y x 2 y 2 x ∙ y y(x) (y-y cp ) 2 (y-y(x)) 2 (x-x p ) 2
78 133 6084 17689 10374 142.16 115.98 83.83 1
82 148 6724 21904 12136 148.61 17.9 0.37 9
87 134 7569 17956 11658 156.68 95.44 514.26 64
79 154 6241 23716 12166 143.77 104.67 104.67
89 162 7921 26244 14418 159.9 332.36 4.39 100
106 195 11236 38025 20670 187.33 2624.59 58.76 729
67 139 4489 19321 9313 124.41 22.75 212.95 144
88 158 7744 24964 13904 158.29 202.51 0.08 81
73 152 5329 23104 11096 134.09 67.75 320.84 36
87 162 7569 26244 14094 156.68 332.36 28.33 64
76 159 5776 25281 12084 138.93 231.98 402.86 9
115 173 13225 29929 19895 201.86 854.44 832.66 1296
16.3 20669.59 265.73 6241
1027 1869 89907 294377 161808 1869 25672.31 2829.74 8774

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(1) = 4.01*1 + 99.18 = 103.19
y(2) = 4.01*2 + 99.18 = 107.2
. . .

2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;α/2) = (11;0.05/2) = 1.796
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим.

Анализ точности определения оценок коэффициентов регрессии

S a = 0.1712
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-20.41;56.24)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается

Статистическая значимость коэффициента регрессии b не подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(a — t S a; a + t S a)
(1.306;1.921)
(b — t b S b; b + t bS b)
(-9.2733;41.876)
где t = 1.796
2) F-статистики

Fkp = 4.84
Поскольку F > Fkp, то коэффициент детерминации статистически значим

Парная регрессия. — Шпаргалки к экзамену — Эконометрия

Парной регрессией называется уравнение связи двух переменных

где у – зависимая переменная (результативный признак);

х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Метод наименьших квадратов МНК

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

5. Оценка статистической значимости показателей корреляции, параметров уравнения парной линейной регрессии, уравнения регрессии в целом.

6. Оценка степени тесноты связи между количественными переменными. Коэффициент ковариации. Показатели корреляции: линейный коэффициент корреляции, индекс корреляции (= теоретическое корреляционное отношение).

Мч(у) — Т.е. получим корреляционную зависимость.

Наличие корреляционной зависимости не может ответить на вопрос о причине связи. Корреляция устанавливает лишь меру этой связи, т.е. меру согласованного варьирования.

Читайте так же:  Грусть сбывшаяся мечта

Меру взаимосвязи му 2 мя переменными можно найти с помощью ковариации.

, ,

Величина показателя ковариации зависит от единиц в γ измеряется переменная. Поэтому для оценки степени согласованного варьирования используют коэффициент корреляции – безразмерную характеристику имеющую определенный пределы варьирования..

7. Коэффициент детерминации. Стандартная ошибка уравнения регрессии.

Коэффициент детерминации (rxy2) – характеризует долю дисперсии результативного признака y, объясняемую дисперсией, в общей дисперсии результативного признака. Чем ближе rxy2 к 1, тем качественнее регрессионная модель, то есть исходная модель хорошо аппроксимирует исходные данные.

8. Оценка стат значимости показателей корр-ии, параметров уравнения парной линейной регрессии, уравнения регрессии в целом: t-критерий Стьюдента, F-критерий Фишера.

9. Нелинейные модели регрессии и их линеаризация.

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно исключенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным, но линейных по оцениваемым параметрам:

Нелинейные модели регрессии и их линеаризация

При нелинейной зависимости признаков, приводимой к линейному виду, параметры множественной регрессии также определяются по МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным. Так, рассматривая степенную функцию

,

мы преобразовываем ее в линейный вид:

,

где переменные выражены в логарифмах.

Далее обработка МНК та же: строится система нормальных уравнений и определяются неизвестные параметры. Потенцируя значение

, находим параметр a и соответственно общий вид уравнения степенной функции.

Вообще говоря, нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Эта оценка определяется, как и в линейной регрессии, МНК. Так, в двухфакторном уравнении нелинейной регрессии

может быть проведена линеаризация, введением в него новых переменных

. В результате получается четырехфактороное уравнение линейной регрессии

10.Мультиколлинеарность. Методы устранения мультиколлинеарности.

Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности.

Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК).

Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам:

ü затрудняется интерпретация параметров множественной регрессии; параметры линейной регрессии теряют экономический смысл;

ü оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений, что делает модель непригодной для анализа и прогнозирования

Методы устранения мультиколлинеарности

— исключение переменной (ых) из модели;

Однако нужна определенная осмотрительность при применении данного метода. В этой ситуации возможны ошибки спецификации.

— получение дополнительных данных или построение новой выборки;

Иногда для уменьшения мультиколлинеарности достаточно величить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных уменьшает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серъезными издержками. Кроме того, такой подход может увеличить

— изменение спецификации модели;

В ряде случаев проблема мультиколлинеарности может быть решена путем изменения спецификации модели: либо меняется форма модели, либо добавляются новые объясняющие переменные, не учтенные в модели.

— использование предварительной информации о некоторых параметрах;

11.Классическая линейная модель множественной регр-ии (КЛММР). Определение параметров ур-я множественной регр-ии методом наим квадратов.

Пример нахождения статистической значимости коэффициентов регрессии

Числитель в этой формуле может быть рассчитан через коэффициент детерминации и общую дисперсию признака-результата:

.
Для параметра a критерий проверки гипотезы о незначимом отличии его от нуля имеет вид:
,
где — оценка параметра регрессии, полученная по наблюдаемым данным;
– стандартная ошибка параметра a.
Для линейного парного уравнения регрессии:
.
Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции в генеральной совокупности используют следующий критерий:
, где ryx — оценка коэффициента корреляции, полученная по наблюдаемым данным; mr – стандартная ошибка коэффициента корреляции ryx.
Для линейного парного уравнения регрессии:
.
В парной линейной регрессии между наблюдаемыми значениями критериев существует взаимосвязь: t ( b =0) = t (r=0). Пример . Уравнение имеет вид y=ax+b
1. Параметры уравнения регрессии.
Средние значения
Читайте так же:  Семейная психотерапия обучение

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 = 0.73 2 = 0.54, т.е. в 54% случаев изменения х приводят к изменению y . Другими словами — точность подбора уравнения регрессии — средняя.

x y x 2 y 2 x ∙ y y(x) (y-y cp ) 2 (y-y(x)) 2 (x-x p ) 2
69 124 4761 15376 8556 128.48 491.36 20.11 367.36
83 133 6889 17689 11039 141.4 173.36 70.56 26.69
92 146 8464 21316 13432 149.7 0.03 13.71 14.69
97 153 9409 23409 14841 154.32 46.69 1.73 78.03
88 138 7744 19044 12144 146.01 66.69 64.21 0.03
93 159 8649 25281 14787 150.63 164.69 70.13 23.36
74 145 5476 21025 10730 133.1 1.36 141.68 200.69
79 152 6241 23104 12008 137.71 34.03 204.21 84.03
105 168 11025 28224 17640 161.7 476.69 39.74 283.36
99 154 9801 23716 15246 156.16 61.36 4.67 117.36
85 127 7225 16129 10795 143.25 367.36 263.91 10.03
94 155 8836 24025 14570 151.55 78.03 11.91 34.03
1058 1754 94520 258338 155788 1754 1961.67 906.57 1239.67

2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (10;0.05) = 1.812
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим.

Анализ точности определения оценок коэффициентов регрессии

S a = 0.2704
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 88,16
(128.06;163.97)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается

Статистическая значимость коэффициента регрессии b подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(a — t a S a; a + t aSa)
(0.4325;1.4126)
(b — t b S b; b + t bSb)
(21.3389;108.3164)
2) F-статистики

Fkp = 4.96
Поскольку F > Fkp, то коэффициент детерминации статистически значим.

Перейти к онлайн решению своей задачи Пример №2 . По территориям региона приводятся данные за 199Х г.;

Среднедневная заработная плата, руб., у
1 78 133 2 82 148 3 87 134 4 79 154 5 89 162 6 106 195 7 67 139 8 88 158 9 73 152 10 87 162 11 76 159 12 115 173

Требуется:
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции.
4. Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимума х , составляющем 107% от среднего уровня.
5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

Видео удалено.
Видео (кликните для воспроизведения).

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим tкрит:
tкрит = (10;0.05) = 1.812
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим.
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Источники


  1. Старшенбаум, Г. В. Как стать семейным психологом / Г.В. Старшенбаум. — М.: Психотерапия, 2013. — 480 c.

  2. Пол, Джордан Как вылечить отношения. Главная книга любовников и супругов / Джордан Пол , Маргарет Пол. — М.: Прайм-Еврознак, 2016. — 320 c.

  3. Гребнева, В. В. Теория и технология решения психологических проблем. Учебное пособие / В.В. Гребнева. — М.: ИНФРА-М, 2016. — 192 c.
  4. Толстая, Наталья Золотой ключик к счастливому дому / Наталья Толстая. — М.: АСТ, 2014. — 320 c.
  5. Энциклопедия современной женщины. Семья и карьера. — М.: Мир книги, 2002. — 350 c.
Значение параметров уравнения регрессии
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here